0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

虹科分享 | 带您了解太赫兹成像技术及系统方案(下)

虹科光电 2022-09-30 09:44 次阅读

上篇我们介绍了太赫兹成像技术的优势、太赫兹成像技术的分类与特点(太赫兹成像技术可以分为脉冲波成像与连续波成像)、TDS成像系统和连续波扫描成像系统的优势与局限。今天带您了解实时成像技术、雷达成像技术的实现方法及优劣势是什么?虹科除了连续波扫描成像系统还有哪些连续太赫兹波成像系统?

01

连续太赫兹成像技术

连续太赫兹在功率方面表现更为突出,基于量子级联激光器原理的连续太赫兹源功率可高达几十毫瓦,而基于肖特基二极管倍频器的连续亚太赫兹源的功率高达上百毫瓦。因此在测量更厚的材料、实现更好的穿透效果方面,连续太赫兹波成像技术会更有优势。基于连续太赫兹波的成像方法由于成像方式与产生方法的不同存在多个种类,每种成像方法各有优劣,用户可根据自己的具体应用需求来选择合适的连续太赫兹成像系统。

1.1

连续太赫兹波扫描成像系统(详见上篇,点击此处查看

该系统构造能够实现最佳亚毫米的成像分辨率,并且能够同时探测到样品的反射与透射太赫兹信号,这对太赫兹信号的分析提供了更多可参考的数据,对于太赫兹成像技术的延展研究也提供了更多可能性。

1.2

太赫兹面阵成像

在上篇提到的成像系统包括TDS系统的缺点都在于其冗长的扫描时间,而太赫兹面阵成像技术的出现解决了这一难题。

面阵成像系统通常利用高功率的连续太赫兹源,准直后形成较为均匀的照明区域照射到样品上,然后通过太赫兹相机进行面成像区域的采集,能够实现均匀照明区域内的实时图像呈现。此类系统的探测器多采用微测热辐射计(Microbolometer),针对太赫兹波段做了优化,且不需要制冷环境,是目前主流的太赫兹成像探测器。其像素大小有多种选择,市面上最高有1280×1024的阵列,而帧频通常在50或60Hz,能够满足常规的成像速度需要。860c1a1a-4019-11ed-b180-dac502259ad0.png

太赫兹面阵成像的典型构造

太赫兹面阵成像技术虽然实现了实时成像,但是它目前仍存在单次成像面积有限的问题,受限于光源均匀后的功率,早期一般使用二氧化碳等气体激光器充作太赫兹源。但是气体激光器不仅体积庞大而且价格高昂,直到量子级联激光器(QCL)的发明为太赫兹面阵成像技术的研究带来了转机,其在2~5T范围具有mW级别的输出功率,且设备结构紧凑,成为面阵成像技术的首选光源。

虹科提供的TeraEyes-HV系统就基于上述成像原理,其构成为:2~5T范围的QCL太赫兹源,最高功率达7mW;成像模块,包括自动对准模块与光源均衡模块,实现光斑的均匀照明,最大照明面积10×10cm2;搭配太赫兹镜头的太赫兹相机,进行实时图像的采集,每分钟采集50帧图像。整个系统组件完整,调整样品与相机的位置即可反射/透射式实时成像,最优可实现250um的分辨率。862f4b16-4019-11ed-b180-dac502259ad0.png

虹科TeraEyes-HV实时成像太赫兹系统

使用QCL太赫兹源成像在均匀光斑的时候存在一个缺点,其输出为相干光,并且太赫兹波长在毫米和亚毫米量级,经过透镜光阑等光学孔径时,出射波束易发生衍射和干涉。经过成像系统中多次光学元件反射后的光束轮廓,光斑周围会存在明显的干涉条纹,如上图所示,在最终样品成像效果中会存在明显影响。

86492aa4-4019-11ed-b180-dac502259ad0.png8656300a-4019-11ed-b180-dac502259ad0.png

QCL源面阵成像受到干涉条纹影响[2]

虹科提供的TeraEyes-HV实时成像系统采用了一种创新的成像设置,包括一个可编程的光束控制单元,能够产生均匀而灵活的照明模式,从而解决了发射相干性带来的限制。辐射通过光束控制单元传播,通过振镜对激光束进行快速控制,从而产生合适的照明模式。光束控制单元是完全可编程的,照明模式可以定制,以适应不同的样品尺寸和应用。通过这种方法减少了衍射造成的成像干扰,进一步提高了信噪比。

8672c300-4019-11ed-b180-dac502259ad0.png868467cc-4019-11ed-b180-dac502259ad0.png

光斑快扫形成等效平行光斑,成像无干涉条纹的影响

因此,基于QCL源与太赫兹相机的连续太赫兹波成像系统能够实时成像,对于想要观察动态变化的样品的内部情况等应用场景是最佳选择方案。

1.3

太赫兹雷达扫描成像:

太赫兹面阵成像技术虽然实现了实时动态的成像效果,但是其探测方式只能收集样品反射/透射信号的强度信息,在信息采集的全面性存在局限。而基于连续太赫兹源,想要获得更多的太赫兹信息(幅度、相位以及深度信息),连续波调频(FMCW)太赫兹雷达是一个不错的选择

86b47ea8-4019-11ed-b180-dac502259ad0.png

太赫兹雷达的成像构造图

FMCW太赫兹雷达通常集成了发射和探测的功能,因此单体结构更为紧凑。太赫兹波的产生同样是基于倍频器等原理,其输出频率主要在亚太赫兹波段(<1THz),因此成像分辨率通常在mm级别。而探测是基于外差探测的混频器原理,连续太赫兹波经过线性/锯齿波/三角波等调制,作用到样品上并采集其反射信号,通过混频器输出中频信号,而中频信号反映了样品的距离(深度信息)。

86da5f60-4019-11ed-b180-dac502259ad0.png

线性FMCW雷达原理

目前,太赫兹波雷达的核心产生与探测主要有两种方法:一种是基于III-V族半导体材料的肖特基二极管倍频器,稳定性高以及动态范围、探测速率等成像表现更好,当然同样价格更高;另一种则是基于硅基材料,能够将倍频器、混频器等诸多功能威廉希尔官方网站 集成在一张芯片上,因此成本与设备体积都会大大减少,而在稳定性和成像性能表现上稍逊一筹。

87163580-4019-11ed-b180-dac502259ad0.png872d731c-4019-11ed-b180-dac502259ad0.png

左为150G雷达 右为120G雷达

比如虹科的150G雷达就是基于GaAs材料,其动态范围约100dB,探测速率高达7.6KHz,有潜力实现高速的线扫描成像;而基于硅基材料的120G雷达则只有10Hz的探测速率,动态范围为30dB,但是成本优势十分明显,内置的光学元件以及搭配的位移平台能够实现便携操作的太赫兹成像检测

总而言之,太赫兹雷达成像的最大优势在于可以的得到样品不同深度的二维图像,实现层析成像,在图像三维重建方面更有优势。并且核心材料制造有低价和高价的选择,能够满足不同需求875b0070-4019-11ed-b180-dac502259ad0.png

FMCW太赫兹雷达成像效果

02

总结

太赫兹成像技术具有穿透性、非接触式、非电离辐射的优势,在食品药品包装内异物检测、腐蚀检测、材料内部缺陷检测等诸多工业应用场景具有广泛的应用前景,当然实际使用时还需要适配具体的工业环境做一些集成开发工作。

根据太赫兹源的类型,太赫兹成像技术可以分为脉冲波成像与连续波成像,而连续波成像根据成像原理的不同又可分为连续波扫描成像、实时成像与雷达成像3种,各个成像系统的优势与局限可以简单如下表所示:

87804754-4019-11ed-b180-dac502259ad0.png

太赫兹成像技术的优点与局限

虹科提供3种连续太赫兹波成像系统,满足用户不同应用场景以及成像参数的需求,以最可靠的系统配置实现最优的太赫兹成像效果。

参考文献:

[1]Jean-Baptiste Perraud et al, Sensors. 2020, 20(14), 3993

[2] A. W. M. Lee et al, Opt. Lett. 2005, 30, 2563

[3]Yao-Chun Shen et al. Chinese Phys. B. 2020, 29, 078705

[4]曹丙花,李素珍等. 光谱学与光谱分析.2020,40, 2686

[5]The Terahertz Users Group of the British Institute of Non-destructive Testing

THE END

如果您对虹科连续太赫兹波成像系统感兴趣,想要了解相关信息,欢迎来电或留言咨询,我们将竭诚为您服务!

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 太赫兹
    +关注

    关注

    10

    文章

    336

    浏览量

    29183
收藏 人收藏

    评论

    相关推荐

    应用 为什么PCAN方案能成为石油工程通讯的首选?

    在石油工程领域,实时监控钻井参数对于确保作业安全和提高效率至关重要。提供的PCAN解决方案凭借其高可靠性和便捷的安装维护特性,为石油钻井行业带来了显著的革新。
    的头像 发表于 11-08 16:48 225次阅读
    <b class='flag-5'>虹</b><b class='flag-5'>科</b>应用 为什么<b class='flag-5'>虹</b><b class='flag-5'>科</b>PCAN<b class='flag-5'>方案</b>能成为石油工程通讯的首选?

    罗德与施瓦茨展示创新6G超稳定可调赫兹系统

    罗德与施瓦茨(以下简称“R&S”)在巴黎举办的欧洲微波周(EuMW 2024)上展示了基于光子赫兹通信链路的6G无线数据传输系统的概念验证,助力新一代无线技术的前沿探索。 在 6G-
    的头像 发表于 10-11 10:56 381次阅读

    关于赫兹波的介绍

    在上面的图表中,光波和无线电波是相同的电磁波,被应用于社会的各个领域。 另一方面,赫兹波还没有被应用。然而,赫兹波具有以下有吸引力的特性和各领域的预期是很有用的。
    的头像 发表于 09-29 06:18 234次阅读
    关于<b class='flag-5'>太</b><b class='flag-5'>赫兹</b>波的介绍

    方案 领航智能交通革新:PEAK智行定位车控系统Demo版亮相

    导读: 在智能汽车技术发展浪潮中,车辆控制系统的智能化、网络化已成为行业发展的必然趋势。PEAK智行定位车控系统,集成了尖端科技,能够实
    的头像 发表于 08-27 09:28 276次阅读
    <b class='flag-5'>虹</b><b class='flag-5'>科</b><b class='flag-5'>方案</b>  领航智能交通革新:<b class='flag-5'>虹</b><b class='flag-5'>科</b>PEAK智行定位车控<b class='flag-5'>系统</b>Demo版亮相

    倒计时7天抢先预约!共赴国际CiA中国技术

    )活动。作为业界领先的科技企业,荣幸地受邀参加此次盛会并出席主题演讲。本次活动,将会带来全面的CAN/CANFD/CANXL解决方案
    的头像 发表于 06-06 08:04 598次阅读
    倒计时7天抢先预约!<b class='flag-5'>虹</b><b class='flag-5'>科</b>邀<b class='flag-5'>您</b>共赴国际CiA中国<b class='flag-5'>技术</b>日

    赫兹时域光谱系统

    到材料的复数频率响应,通常会利用超短脉冲泵浦激光的非线性过程产生一个特定频率范围的赫兹脉冲。赫兹脉冲会在样品中透射以及被反射。随后,
    的头像 发表于 05-24 06:33 500次阅读
    <b class='flag-5'>太</b><b class='flag-5'>赫兹</b>时域光谱<b class='flag-5'>系统</b>

    脉冲赫兹信号的探测方式有哪几种

    脉冲赫兹信号的探测是赫兹科学技术领域的一个重要分支,它在材料检测、生物医学成像、安全检查以及
    的头像 发表于 05-16 18:26 1245次阅读

    新品 | E-Val Pro Plus有线验证解决方案

    有线验证解决方案E-ValProPlus我们很高兴地宣布,我们将推出全新的
    的头像 发表于 04-19 08:04 362次阅读
    <b class='flag-5'>虹</b><b class='flag-5'>科</b>新品 | E-Val Pro Plus有线验证解决<b class='flag-5'>方案</b>

    方案 | 符合医药行业规范的液氮罐运输和存储温度监测解决方案

    在医药行业,液氮罐用于运输和存储敏感生物样本和药品,需保持极低温度。的液氮罐温度监测解决方案不仅符合行业规范,还解决了极端低温的挑战。了解
    的头像 发表于 04-17 13:08 319次阅读
    <b class='flag-5'>虹</b><b class='flag-5'>科</b><b class='flag-5'>方案</b> | 符合医药行业规范的液氮罐运输和存储温度监测解决<b class='flag-5'>方案</b>

    赫兹关键技术及在通信里的应用

    赫兹波在自然界中随处可见,我们身边的大部分物体的热辐射都是赫兹波。它是位于微波和红外短波之间的过渡区域的电磁波,在电子学领域,这段电磁波称为毫米波和亚毫米波,在光学领域,又被称为远
    发表于 04-16 10:34 2215次阅读
    <b class='flag-5'>太</b><b class='flag-5'>赫兹</b>关键<b class='flag-5'>技术</b>及在通信里的应用

    芯问科技赫兹芯片集成封装技术通过验收

    《半导体芯科技》杂志文章 芯问科技“赫兹芯片集成封装技术”项目近日顺利通过上海市科学技术委员会的验收。 该项目基于
    的头像 发表于 04-02 15:23 740次阅读

    分享 | PCAN工具:强大的CAN通讯解决方案,你了解多少?

    在当今的汽车和工业自动化领域,可靠的通讯系统至关重要,PCAN工具为这些应用提供了强大的支持。本文将介绍PCAN工具的功能、应用和优
    的头像 发表于 02-02 09:54 836次阅读
    <b class='flag-5'>虹</b><b class='flag-5'>科</b>分享 | PCAN工具:强大的CAN通讯解决<b class='flag-5'>方案</b>,你<b class='flag-5'>了解</b>多少?

    研究人员开发出一种新型赫兹成像系统

    赫兹波可以穿透不透明材料,并提供各种化学物质的独特光谱特征,但它们在现实世界中的应用受到赫兹成像系统
    的头像 发表于 01-19 10:05 876次阅读
    研究人员开发出一种新型<b class='flag-5'>太</b><b class='flag-5'>赫兹</b><b class='flag-5'>成像</b><b class='flag-5'>系统</b>

    赫兹真空器件的重要组成部件

    赫兹波处于电磁波谱中电子学与光子学之间的空隙区域,具有不同于低频微波和高频光学的独特属性,在无线通信、生物医学、公共安全等军事和民用领域具有广泛的应用前景。赫兹
    的头像 发表于 01-04 10:03 1705次阅读
    <b class='flag-5'>太</b><b class='flag-5'>赫兹</b>真空器件的重要组成部件

    用单像素赫兹传感器检测材料中的隐藏缺陷

    使用单像素光谱探测器快速检测隐藏物体或缺陷的衍射赫兹传感器示意图。 在工程和材料科学领域,检测材料中隐藏的结构或缺陷至关重要。传统的赫兹成像
    的头像 发表于 01-03 06:33 477次阅读
    用单像素<b class='flag-5'>太</b><b class='flag-5'>赫兹</b>传感器检测材料中的隐藏缺陷