0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

cnn卷积神经网络算法 cnn卷积神经网络模型

工程师邓生 来源:未知 作者:刘芹 2023-08-21 17:15 次阅读

cnn卷积神经网络算法 cnn卷积神经网络模型

卷积神经网络(CNN)是一种特殊的神经网络,具有很强的图像识别和数据分类能力。它通过学习权重和过滤器,自动提取图像和其他类型数据的特征。在过去的几年中,CNN已成为图像识别和语音识别领域的热门算法,广泛应用于自动驾驶、医学诊断、物体检测等方面。

CNN的基本原理是利用卷积层提取图像的特征,通过池化层降低特征的维度,然后通过全连接层将特征映射到输出,实现分类或回归任务。每个卷积层包括多个过滤器(filter),每个过滤器的大小通常是3x3或5x5,通过跨度(stride)和填充(padding)控制每次的卷积步长,提取特征后得到卷积映射(convolution map)。

池化层(pooling layer)可以减少特征的大小,降低计算量,同时可以保留图像的一定特征。Max pooling是最常用的池化方法,通过选取最大值来代替池化区域中的值。

在CNN中,重要的是学习到合适的权重和过滤器,以提取特定的特征。为此,我们需要引入损失函数(loss function)和优化器(optimizer)。损失函数用于衡量CNN输出与真实标签之间的差异,例如交叉熵函数(cross-entropy)。优化器则用于更新权重和过滤器的值,例如随机梯度下降(SGD)算法。

CNN模型的训练过程是一个反向传播算法(backpropagation),主要包括前向传播(forward propagation)和反向传播(backward propagation)两个步骤。前向传播将输入样本通过网络层,得到输出结果,而反向传播则通过逐层反向计算误差,更新权重和过滤器的值,进一步优化CNN模型的性能。

除了标准的CNN模型,还存在一些改进的模型,例如深度卷积神经网络(DCNN)、残差网络(ResNet)、注意力机制(Attention)等。这些模型通过加深网络深度、引入残差连接等方式,进一步提升了CNN模型的性能。

最后,CNN算法成功的原因在于其能够自动提取图像特征,避免了手动提取特征的复杂过程,同时也具有较强的泛化能力。虽然CNN的应用范围还在扩展中,但它已经成为了计算机视觉领域的重要算法,未来的发展及应用还值得期待。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 过滤器
    +关注

    关注

    1

    文章

    428

    浏览量

    19600
  • cnn
    cnn
    +关注

    关注

    3

    文章

    352

    浏览量

    22211
  • 卷积神经网络

    关注

    4

    文章

    367

    浏览量

    11863
收藏 人收藏

    评论

    相关推荐

    卷积神经网络的基本原理与算法

    卷积神经网络(Convolutional Neural Networks,CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(Feedf
    的头像 发表于 11-15 14:47 496次阅读

    卷积神经网络有何用途 卷积神经网络通常运用在哪里

    卷积神经网络(Convolutional Neural Networks,简称CNN)是一种深度学习模型,广泛应用于图像识别、视频分析、自然语言处理、生物信息学等领域。本文将介绍
    的头像 发表于 07-11 14:43 2340次阅读

    卷积神经网络的基本概念、原理及特点

    卷积神经网络(Convolutional Neural Networks,简称CNN)是一种深度学习算法,它在图像识别、视频分析、自然语言处理等领域有着广泛的应用。本文将详细介绍
    的头像 发表于 07-11 14:38 1041次阅读

    BP神经网络卷积神经网络的关系

    BP神经网络(Backpropagation Neural Network)和卷积神经网络(Convolutional Neural Network,简称CNN)是两种在人工智能和机器
    的头像 发表于 07-10 15:24 1471次阅读

    卷积神经网络的实现原理

    卷积神经网络(Convolutional Neural Networks,简称CNN)是一种深度学习模型,广泛应用于图像识别、视频分析、自然语言处理等领域。本文将详细介绍
    的头像 发表于 07-03 10:49 544次阅读

    bp神经网络卷积神经网络区别是什么

    BP神经网络(Backpropagation Neural Network)和卷积神经网络(Convolutional Neural Network,简称CNN)是两种不同类型的人工
    的头像 发表于 07-03 10:12 1168次阅读

    卷积神经网络分类方法有哪些

    卷积神经网络(Convolutional Neural Networks,CNN)是一种深度学习模型,广泛应用于图像分类、目标检测、语义分割等计算机视觉任务。本文将详细介绍
    的头像 发表于 07-03 09:40 461次阅读

    卷积神经网络的基本结构和工作原理

    卷积神经网络(Convolutional Neural Networks,简称CNN)是一种深度学习模型,广泛应用于图像识别、视频分析、自然语言处理等领域。本文将详细介绍
    的头像 发表于 07-03 09:38 621次阅读

    cnn卷积神经网络分类有哪些

    卷积神经网络CNN)是一种深度学习模型,广泛应用于图像分类、目标检测、语义分割等领域。本文将详细介绍CNN在分类任务中的应用,包括基本结构
    的头像 发表于 07-03 09:28 621次阅读

    cnn卷积神经网络三大特点是什么

    卷积神经网络(Convolutional Neural Networks,简称CNN)是一种深度学习模型,广泛应用于图像识别、视频分析、自然语言处理等领域。
    的头像 发表于 07-03 09:26 1026次阅读

    卷积神经网络训练的是什么

    卷积神经网络(Convolutional Neural Networks,简称CNN)是一种深度学习模型,广泛应用于图像识别、视频分析、自然语言处理等领域。本文将详细介绍
    的头像 发表于 07-03 09:15 406次阅读

    卷积神经网络的原理与实现

    1.卷积神经网络(Convolutional Neural Networks,简称CNN)是一种深度学习模型,广泛应用于图像识别、视频分析、自然语言处理等领域。
    的头像 发表于 07-02 16:47 569次阅读

    卷积神经网络cnn模型有哪些

    卷积神经网络(Convolutional Neural Networks,简称CNN)是一种深度学习模型,广泛应用于图像识别、视频分析、自然语言处理等领域。
    的头像 发表于 07-02 15:24 718次阅读

    卷积神经网络的原理是什么

    卷积神经网络(Convolutional Neural Network,简称CNN)是一种深度学习模型,广泛应用于图像识别、语音识别、自然语言处理等领域。本文将详细介绍
    的头像 发表于 07-02 14:44 643次阅读

    卷积神经网络和bp神经网络的区别

    卷积神经网络(Convolutional Neural Networks,简称CNN)和BP神经网络(Backpropagation Neural Networks,简称BPNN)是两
    的头像 发表于 07-02 14:24 3774次阅读