描述
为什么荧光发射波长大于激发波长
荧光是一种可以被激发的物理现象,许多物质在激发后能够放出光子发出荧光。在某些情况下,荧光发射波长比激发波长更长。这种现象被称为荧光红移。
荧光的红移现象可以用许多方法来解释。下面将详细介绍几种常见的解释方法。
1. 荧光的自吸收
荧光分子在激发时会吸收能量,但是由于它们具有特定的结构,不是所有的能量都被吸收。一些能量会被吸收到低能级态中,然后在荧光过程中释放出来。因此,荧光发射的波长比激发波长更长,因为它们释放的能量是来自之前被吸收的低能量。
这个过程被称为荧光的自吸收。它会导致荧光发射的波长红移,因为它们释放的能量比吸收的能量低。
2. 荧光分子的结构变化
荧光分子的结构在激发过程中可能发生变化,这个变化会影响分子的能级分布。当分子恢复到基态时,能级分布也会恢复。然而,分子在荧光发射之前,需要先经过一个快速的结构变化过程,这会导致荧光发射的波长比激发波长更长。
这个过程被称为Kasha的规则,它说明了在激发后,荧光分子需要经过一个快速的结构变化过程才能发出荧光。
3. 荧光分子的旋转改变
荧光发射的波长也可能受到荧光分子在激发过程中旋转的影响。在某些情况下,分子在激发后旋转会发生变化,这会影响到荧光分子的结构,从而影响荧光波长。
这个过程被称为Sato-Tamura效应。当一个分子在激发后旋转后,它会发出一些难以解释的光学效应,这些效应会导致荧光发射的波长比激发波长更长。
4. 荧光基团的溶剂效应
荧光分子在不同的溶剂中发射的波长可能会发生变化。这是因为溶剂的极性会影响荧光分子的结构和荧光发射的波长。
这个过程被称为荧光基团的溶剂效应,它有时会导致荧光发射的波长比激发波长更长。
在各种荧光现象中,荧光红移是一种普遍存在的现象。荧光分子的结构、旋转、溶剂环境等因素都可能影响荧光发射的波长。这也意味着,当科学家通过荧光实验来研究物质时,需要考虑到这些因素的影响。
打开APP阅读更多精彩内容