0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

如何实现高效的供电网络 (PDN) 设计

科技绿洲 来源:EDN 作者:EDN 2023-10-23 16:40 次阅读

在为 5G 应用设计电源系统时,设计人员必须考虑此类应用固有的宽频率范围,从稳压器中的中频到 FPGA
内核中的高时钟频率。这种端到端的全双工设计对于优化电源、电源转换和配电过程的性能至关重要。

本文重点介绍如何实现高效的供电网络 (PDN) 设计。PDN 由连接到电压轨和接地轨的所有组件组成,包括电源和接地层布局、无源元件、IC
以及连接或耦合到主电源轨的任何其他铜质元件。在设计过程中,必须考虑 PDN 中组件的寄生行为,因为这会影响整个系统行为。

旁路和去耦电容是 PDN 中必不可少的元件。因此,PDN 设计中的电容器选择和放置需要特别考虑,因为电容不足会导致系统不稳定和性能问题。

d耦合和bypass电容器的重要性

旁路电容器用于稳压器模块(VRM),通过滤除输入纹波电流转换器提供低阻抗电压源。它们还可以补偿电源耦合到 IC
接地连接产生的开关噪声产生的潜在接地反弹电压。

在降压稳压器的输出端,去耦电容的主要目的是保证输出电压(V外) 通过降低输出电压纹波 (∆V
保持恒定外).因此,选择电容以限制∆V外到负载输入规格设定的幅度,同时还考虑与转换器负载突然变化引起的电压变化相关的限制。

bypass电容器的放置策略

旁路电容器是确保降压转换器可靠运行的最重要元件。放置IC后,旁路电容器是布局中放置的第一个元件,必须在IC放置后立即布线。由于不正确的布线而导致的额外寄生电感与转换器的开关相结合,会产生过大的电压尖峰,这可能导致IC故障。

图1显示了负载点(PoL)转换器旁路电容(CI21和CI26)的最佳放置。
8C81F933-7AF8-441f-A0F5-EAA900052BFE.png

旁路电容器环路中产生的寄生电感可分为两部分:电容器的寄生电感和电感和IC之间的电流路径布局产生的电感。由于PCB布局几何形状产生的电感相对于总电感比固有电容器电感更重要,因此设计工作应重点关注。

为了最小化环路电感,旁路电容应尽可能靠近IC放置。还应使用过孔将电容器的焊盘直接连接到电源 (PWR) 和接地 (GND) 网络,尽可能靠近 IC 引脚,从而最大限度地减少电流路径。

选择d耦合****电容器

所需的去耦电容类型和数量取决于电容在频域中的行为。去耦电容设计用于最大限度地降低VRM的∆V这是由转换器的开关操作产生的,以及以高频向FPGA/ASIC提供瞬时电流,直到电源可以响应。因此,必须考虑整个工作频谱。

基本电容模型包括三个关键要素:电容 (C)、等效串联电阻 (ESR) 和等效串联电感 (ESL),如图 2 所示。
8C81F933-7AF8-441f-A0F5-EAA900052BFE.png

图2这就是电容器等效威廉希尔官方网站 模型的样子。来源:单片电源系统

ESR由元件中导电元件的阻抗引起,并决定了谐振频率处的最小阻抗。ESL由流过电容器的电流的影响产生,并决定谐振频率。谐振频率是电容器阻抗曲线中元件开始表现得像电感器的点,阻抗与频率成比例地增加。

在低频(高达50 kHz)下,降压转换器具有低阻抗。然而,降压转换器在高频下的阻抗主要是感性的。添加到PCB中的每个电容器都会降低给定频率下的PDN阻抗,这意味着精确的放置和选择可以实现设定的目标阻抗曲线。因此,通过从检测点进行测量,可以在给定频率下满足目标阻抗。

目标阻抗(Z 目标 ) 可以用公式 1 计算:

Z 目标 = ∆V 噪声 /我 TRANSIENT_MAX (1)

其中 ∆V噪声是最大允许纹波电压和ITRANSIENT_MAX是转换器必须提供的最大负载步长。还可以计算所需的输入和输出电容。

为了将阻抗保持在目标水平以下,必须约束设计并降低寄生电感。大容量电容器在高达 10 MHz 的频率范围内降低阻抗,而 MLCC 电容器在中高频范围内降低阻抗。

图3显示了大容量电容器和MLCC电容器的阻抗频率特性。
8C81F933-7AF8-441f-A0F5-EAA900052BFE.png

图3图中显示了典型大容量电容器和MLCC电容器的阻抗频率特性。来源:单片电源系统

d耦合电容器布局****策略

一旦计算和分析了电容,去耦电容在PCB中的最佳位置就很重要。布局几何形状、通孔布局和距离主要影响电源层环路电感,从而影响PDN响应。图4显示了转换器、去耦电容和负载产生的电流环路。由于这些回路是结构固有的并且不可避免,因此尽可能减少这些回路至关重要。
8C81F933-7AF8-441f-A0F5-EAA900052BFE.png

图4电流环路由转换器、去耦电容和负载产生。来源:单片电源系统

环路1是水平环路分量,由转换器和去耦电容之间的距离决定。环路 2 是垂直环路组件,由将电容器连接到电源层的通孔高度决定。电源层通常放置在PCB的最内层。

该测试板在双相操作中使用两个PoL转换器,V0.9 V 和最大输出电流 (I OUT_MAX ) 的 50 A,这是 ASIC/FPGA 电源轨的通用值。可以使用测试板进行不同场景的仿真,以确定电容器的最佳放置。

为了评估最佳电容布局,在ASIC/FPGA中心的板级检测点测量阻抗。使用公式1的分析,可以使用8 x 22 μF MLCC电容和2 x 220 μF大容量电容实现VRM阻抗曲线。为了保持稳压器的稳定性,大容量电容器紧跟在输出电感器之后。测试板考虑了22 μF MLCC电容在外壳1a和案例1b下的不同位置(见 图5 )。

8C81F933-7AF8-441f-A0F5-EAA900052BFE.png

图5测试板说明了去耦电容的放置。来源:单片电源系统

在情况1a中,MLCC电容器放置在ASIC/FPGA之前,从而减小了环路1的尺寸。在案例1b中,MLCC电容器放置在大容量电容器旁边,因此MLCC电容器与传感点之间的距离是案例1a的两倍。

图6显示了将大容量电容放置在降压转换器附近时的仿真结果,这导致低频范围内的阻抗降低(绿色迹线)。将MLCC电容器放置在靠近负载的位置(红色迹线)可降低高频范围内的阻抗,从而使电容器能够更有效地提供FPGA/ASIC负载所需的瞬时电流阶跃。

8C81F933-7AF8-441f-A0F5-EAA900052BFE.png

图6显示了回路 1 大小变化的测试结果。来源:单片电源系统

传统设计指南建议将去耦电容放置在PCB的底部,以减小威廉希尔官方网站 板空间,从而提高功率密度。然而,将电容器放置在威廉希尔官方网站 板底部需要更长的过孔才能到达ASIC/FPGA所在的另一侧。这增加了垂直路径的大小,如图 4 所示,如环路 2 所示。

通过将过孔高度加倍进行了额外的测试,以分析增加环路 2 尺寸的效果。图7显示了环路2尺寸变化的测试结果,其中观察到类似的趋势,通孔高度增加导致中高频范围内的阻抗增加。

8C81F933-7AF8-441f-A0F5-EAA900052BFE.png

图7显示了环路 2 大小变化的测试结果。来源:单片电源系统

最小化去耦电容中的环路电感与电容数量同样重要。有两种方法可以实现降低环路电感。第一种方法是减小IC和电容器之间的水平距离。第二种方法是通过将电源层和接地层放置在上层来降低通孔高度。

在小范围内放置多个元件以减少威廉希尔官方网站 板空间通常会导致电容共享过孔。当电容器共享过孔时,如果不考虑通孔定位和数量,正确选择和定位的整体改进可能会显着降低甚至可以忽略不计。因此,通孔布局设计也是降低环路阻抗的关键。

为了分析过孔定位和数量的影响,使用威廉希尔官方网站 板进行了第二次测试,通过放置两个通用设计建议。在第一个设置中,每个电容都有自己的一组通孔连接到电源和接地层(见 图8 )。
8C81F933-7AF8-441f-A0F5-EAA900052BFE.png

图8每个电容器都有自己的一组电源和接地层过孔。来源:单片电源系统

在第二种设置中,所有电容共用一组位于平面一侧的过孔(见 图9 )。
8C81F933-7AF8-441f-A0F5-EAA900052BFE.png

图9所有电容器共用一组位于平面一侧的过孔。来源:单片电源系统

图10显示了通孔放置变化的测试结果。将过孔放置在远离电容的位置会增加环路1的尺寸,从而增加环路电感。因此,过孔共享增加了高频阻抗。
8C81F933-7AF8-441f-A0F5-EAA900052BFE.png

图10显示过孔放置变化的测试结果。来源:单片电源系统

根据后续测试,建议在0805和0603封装中,大容量电容器至少使用4个电源通孔和4个接地过孔,MLCC电容器至少使用2个电源过孔和2个接地过孔。过孔应尽可能靠近电容器放置。

整个 PDN

在设计 FPGA/ASIC 系统或任何需要高电流和快速负载瞬变的威廉希尔官方网站 时,必须全面考虑 PDN,以优化系统性能。快速负载阶跃,例如在FPGA中观察到的阶跃,会在整个威廉希尔官方网站 中产生强大的高频电流。在如此高的频率下,PDN 中通常可以忽略的寄生元件可能会突然导致设备故障。设计人员必须注意确保 PDN 的寄生元件最小化。

本文重点介绍如何使用PoL转换器降低VRM去耦电容中的电流路径引起的寄生阻抗。为了获得最佳性能,垂直轴和水平轴上的电流环路应尽可能短。将电流环路放置在尽可能靠近负载的位置,并将电源走线保持在外层,可有效减少通孔长度。

适当的过孔放置也是降低寄生电感的关键。因此,建议在尽可能靠近每个电容器焊盘的位置放置多个过孔,以减少过孔的总寄生电感以及流过每个过孔的电流。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 电源
    +关注

    关注

    184

    文章

    17740

    浏览量

    250540
  • 转换器
    +关注

    关注

    27

    文章

    8714

    浏览量

    147314
  • 电压
    +关注

    关注

    45

    文章

    5608

    浏览量

    115882
  • PDN
    PDN
    +关注

    关注

    0

    文章

    83

    浏览量

    22708
  • 供电网络
    +关注

    关注

    0

    文章

    15

    浏览量

    7491
收藏 人收藏

    评论

    相关推荐

    基于探头的快速识别PDN在线敏感度解决方案

    电网络PDN)噪声是低功耗应用中最常见的问题之一。无论您是为ADC,时钟,LNA,数字数据网络还是敏感的RF应用供电,正确调整电源都是至关重要的。
    的头像 发表于 05-07 08:36 2315次阅读
    基于探头的快速识别<b class='flag-5'>PDN</b>在线敏感度解决方案

    DC–DC 转换器为 GSPS ADC 提供高效电网络

    低噪声 LDO(低压差)稳压器为 GSPS(或 RF 采样)ADC 供电,以便达到最高性能。然而,这种方式的输电网络 (PDN) 效率不高。设计人员对于使用开关稳压器直接为GSPS ADC
    发表于 05-28 10:31

    DC–DC转换器为GSPS ADC提供高效电网络

    达到最高性能。然而,这种方式的输电网络 (PDN) 效率不高。设计人员对于使用开关稳压器直接为GSPS ADC 供电且不会大幅降低 ADC 性能的方法呼声渐高。解决方案是谨慎地进行 PDN
    发表于 10-29 16:53

    GSPS ADC搭配DC-DC转换器,提高输电网络效能

    ,系统设计人员不断尝试降低总功耗。一般而言,ADC 制造商建议采用低噪声 LDO(低压差)稳压器为 GSPS(或 RF 采样)ADC 供电,以便达到最高性能。然而,这种方式的输电网络 (PDN) 效率不高
    发表于 10-30 11:52

    通过输电网络合探讨GSPS ADC性能

    RF 采样)ADC 供电,以便达到最高性能。然而,这种方式的输电网络 (PDN) 效率不高。设计人员对于使用开关稳压器直接为GSPS ADC 供电且不会大幅降低 ADC 性能的方法呼
    发表于 11-20 10:50

    怎么基于RFID实现电能电网

    智能电网,就是电网的智能化,它是建立在集成、高速双向通信网络的基础上,通过先进的传感和测量技术、设备技术、控制方法以及决策支持系统技术的应用,实现
    发表于 08-19 08:31

    如何实现智能电网自动化?

      要实现对新的或者更新后的智能电网的最优控制,需要端到端通信和高效供电网络,特别是传输和分配(T&D)子站。为能够支持自动化,设备应具有监视和控制功能,确保能够实时
    发表于 09-17 06:07

    如何利用Cyclone FPGA实现智能电网自动化?

    实现对新的或者更新后的智能电网的最优控制,需要端到端通信和高效供电网络,特别是传输和分配(T FPGA技术在复杂智能电网辅助支持系统中扮
    发表于 09-23 07:06

    如何优化供电网络

    ,其规格定义了它们的稳定工作范围。这些稳压器的供电网络 (PDN) 的复杂性可能会因负载的数量和类型、整体系统架构、负载功率级、电压等级(转换级)以及隔离和稳压要求的不同而不同。许多电源系统设计人员将
    发表于 10-29 06:12

    智能电网如何实现

    何为智能电网实际上目前对于智能电网没有统一的定义,各个领域的专家从不同角度阐述了智能电网的内涵,并且随着研究和实践的深入对其不断细化。目前智能电网主要以是
    发表于 06-30 08:12

    电源系统优化——深入解读优化高速数据转换器的配电网络

    高效率,降低空间要求以及图1中PDN的功率损耗,同时实现AD9175出色的动态性能。噪声目标是基于图3和图4所示的最大允许波纹阈值。优化的配电网络由LT8650S和LT8653S S
    发表于 07-17 07:00

    利用Spice实现供电网络版图设计

    利用Spice实现供电网络版图设计
    发表于 01-14 12:48 0次下载

    震旦ad330pdn

    电力传输网络PDN)是SOC中最重要的组件之一,因为它为设计中的所有组件供电。随着设计复杂性的增加,分区方法越来越受欢迎,而功率门控有助于降低不断增长的功耗。通过这些方法,设计变得更加高效
    的头像 发表于 08-08 17:30 2078次阅读
    震旦ad330<b class='flag-5'>pdn</b>

    如何通过PDN指南来设计威廉希尔官方网站 板的供电网络

    PDN设计指南来设计威廉希尔官方网站 板的供电网络。 威廉希尔官方网站 板上的所有有源电子组件都需要电源才能运行,为此,PCB需要设计良好的电源传输网络PDN)。一次,PCB上的集成威廉希尔官方网站 设备只有一个电源和接地
    的头像 发表于 12-25 11:42 2126次阅读

    PCB制造:PDN设计指南

    了解如何使用您的 PDN 设计指南来设计威廉希尔官方网站 板的供电网络。 PCB 上良好供电网络的必要性 威廉希尔官方网站 板上的所有有源电子组件都需要电源才能运行,为此, PCB 需要设计良好的电源传输网络
    的头像 发表于 10-13 20:23 3271次阅读