在为 5G 应用设计电源系统时,设计人员必须考虑此类应用固有的宽频率范围,从稳压器中的中频到 FPGA
内核中的高时钟频率。这种端到端的全双工设计对于优化电源、电源转换和配电过程的性能至关重要。
本文重点介绍如何实现高效的供电网络 (PDN) 设计。PDN 由连接到电压轨和接地轨的所有组件组成,包括电源和接地层布局、无源元件、IC
以及连接或耦合到主电源轨的任何其他铜质元件。在设计过程中,必须考虑 PDN 中组件的寄生行为,因为这会影响整个系统行为。
旁路和去耦电容是 PDN 中必不可少的元件。因此,PDN 设计中的电容器选择和放置需要特别考虑,因为电容不足会导致系统不稳定和性能问题。
d耦合和bypass电容器的重要性
旁路电容器用于稳压器模块(VRM),通过滤除输入纹波电流为转换器提供低阻抗电压源。它们还可以补偿电源耦合到 IC
接地连接产生的开关噪声产生的潜在接地反弹电压。
在降压稳压器的输出端,去耦电容的主要目的是保证输出电压(V外) 通过降低输出电压纹波 (∆V
保持恒定外).因此,选择电容以限制∆V外到负载输入规格设定的幅度,同时还考虑与转换器负载突然变化引起的电压变化相关的限制。
bypass电容器的放置策略
旁路电容器是确保降压转换器可靠运行的最重要元件。放置IC后,旁路电容器是布局中放置的第一个元件,必须在IC放置后立即布线。由于不正确的布线而导致的额外寄生电感与转换器的开关相结合,会产生过大的电压尖峰,这可能导致IC故障。
图1显示了负载点(PoL)转换器旁路电容(CI21和CI26)的最佳放置。
旁路电容器环路中产生的寄生电感可分为两部分:电容器的寄生电感和电感和IC之间的电流路径布局产生的电感。由于PCB布局几何形状产生的电感相对于总电感比固有电容器电感更重要,因此设计工作应重点关注。
为了最小化环路电感,旁路电容应尽可能靠近IC放置。还应使用过孔将电容器的焊盘直接连接到电源 (PWR) 和接地 (GND) 网络,尽可能靠近 IC 引脚,从而最大限度地减少电流路径。
选择d耦合****电容器
所需的去耦电容类型和数量取决于电容在频域中的行为。去耦电容设计用于最大限度地降低VRM的∆V外这是由转换器的开关操作产生的,以及以高频向FPGA/ASIC提供瞬时电流,直到电源可以响应。因此,必须考虑整个工作频谱。
基本电容模型包括三个关键要素:电容 (C)、等效串联电阻 (ESR) 和等效串联电感 (ESL),如图 2 所示。
图2这就是电容器等效威廉希尔官方网站 模型的样子。来源:单片电源系统
ESR由元件中导电元件的阻抗引起,并决定了谐振频率处的最小阻抗。ESL由流过电容器的电流的影响产生,并决定谐振频率。谐振频率是电容器阻抗曲线中元件开始表现得像电感器的点,阻抗与频率成比例地增加。
在低频(高达50 kHz)下,降压转换器具有低阻抗。然而,降压转换器在高频下的阻抗主要是感性的。添加到PCB中的每个电容器都会降低给定频率下的PDN阻抗,这意味着精确的放置和选择可以实现设定的目标阻抗曲线。因此,通过从检测点进行测量,可以在给定频率下满足目标阻抗。
目标阻抗(Z 目标 ) 可以用公式 1 计算:
Z 目标 = ∆V 噪声 /我 TRANSIENT_MAX (1)
其中 ∆V噪声是最大允许纹波电压和ITRANSIENT_MAX是转换器必须提供的最大负载步长。还可以计算所需的输入和输出电容。
为了将阻抗保持在目标水平以下,必须约束设计并降低寄生电感。大容量电容器在高达 10 MHz 的频率范围内降低阻抗,而 MLCC 电容器在中高频范围内降低阻抗。
图3显示了大容量电容器和MLCC电容器的阻抗频率特性。
图3图中显示了典型大容量电容器和MLCC电容器的阻抗频率特性。来源:单片电源系统
d耦合电容器的布局****策略
一旦计算和分析了电容,去耦电容在PCB中的最佳位置就很重要。布局几何形状、通孔布局和距离主要影响电源层环路电感,从而影响PDN响应。图4显示了转换器、去耦电容和负载产生的电流环路。由于这些回路是结构固有的并且不可避免,因此尽可能减少这些回路至关重要。
图4电流环路由转换器、去耦电容和负载产生。来源:单片电源系统
环路1是水平环路分量,由转换器和去耦电容之间的距离决定。环路 2 是垂直环路组件,由将电容器连接到电源层的通孔高度决定。电源层通常放置在PCB的最内层。
该测试板在双相操作中使用两个PoL转换器,V外0.9 V 和最大输出电流 (I OUT_MAX ) 的 50 A,这是 ASIC/FPGA 电源轨的通用值。可以使用测试板进行不同场景的仿真,以确定电容器的最佳放置。
为了评估最佳电容布局,在ASIC/FPGA中心的板级检测点测量阻抗。使用公式1的分析,可以使用8 x 22 μF MLCC电容和2 x 220 μF大容量电容实现VRM阻抗曲线。为了保持稳压器的稳定性,大容量电容器紧跟在输出电感器之后。测试板考虑了22 μF MLCC电容在外壳1a和案例1b下的不同位置(见 图5 )。
图5测试板说明了去耦电容的放置。来源:单片电源系统
在情况1a中,MLCC电容器放置在ASIC/FPGA之前,从而减小了环路1的尺寸。在案例1b中,MLCC电容器放置在大容量电容器旁边,因此MLCC电容器与传感点之间的距离是案例1a的两倍。
图6显示了将大容量电容放置在降压转换器附近时的仿真结果,这导致低频范围内的阻抗降低(绿色迹线)。将MLCC电容器放置在靠近负载的位置(红色迹线)可降低高频范围内的阻抗,从而使电容器能够更有效地提供FPGA/ASIC负载所需的瞬时电流阶跃。
图6显示了回路 1 大小变化的测试结果。来源:单片电源系统
传统设计指南建议将去耦电容放置在PCB的底部,以减小威廉希尔官方网站 板空间,从而提高功率密度。然而,将电容器放置在威廉希尔官方网站 板底部需要更长的过孔才能到达ASIC/FPGA所在的另一侧。这增加了垂直路径的大小,如图 4 所示,如环路 2 所示。
通过将过孔高度加倍进行了额外的测试,以分析增加环路 2 尺寸的效果。图7显示了环路2尺寸变化的测试结果,其中观察到类似的趋势,通孔高度增加导致中高频范围内的阻抗增加。
图7显示了环路 2 大小变化的测试结果。来源:单片电源系统
最小化去耦电容中的环路电感与电容数量同样重要。有两种方法可以实现降低环路电感。第一种方法是减小IC和电容器之间的水平距离。第二种方法是通过将电源层和接地层放置在上层来降低通孔高度。
在小范围内放置多个元件以减少威廉希尔官方网站 板空间通常会导致电容共享过孔。当电容器共享过孔时,如果不考虑通孔定位和数量,正确选择和定位的整体改进可能会显着降低甚至可以忽略不计。因此,通孔布局设计也是降低环路阻抗的关键。
为了分析过孔定位和数量的影响,使用威廉希尔官方网站
板进行了第二次测试,通过放置两个通用设计建议。在第一个设置中,每个电容都有自己的一组通孔连接到电源和接地层(见 图8 )。
图8每个电容器都有自己的一组电源和接地层过孔。来源:单片电源系统
在第二种设置中,所有电容共用一组位于平面一侧的过孔(见 图9 )。
图9所有电容器共用一组位于平面一侧的过孔。来源:单片电源系统
图10显示了通孔放置变化的测试结果。将过孔放置在远离电容的位置会增加环路1的尺寸,从而增加环路电感。因此,过孔共享增加了高频阻抗。
图10显示过孔放置变化的测试结果。来源:单片电源系统
根据后续测试,建议在0805和0603封装中,大容量电容器至少使用4个电源通孔和4个接地过孔,MLCC电容器至少使用2个电源过孔和2个接地过孔。过孔应尽可能靠近电容器放置。
整个 PDN
在设计 FPGA/ASIC 系统或任何需要高电流和快速负载瞬变的威廉希尔官方网站 时,必须全面考虑 PDN,以优化系统性能。快速负载阶跃,例如在FPGA中观察到的阶跃,会在整个威廉希尔官方网站 中产生强大的高频电流。在如此高的频率下,PDN 中通常可以忽略的寄生元件可能会突然导致设备故障。设计人员必须注意确保 PDN 的寄生元件最小化。
本文重点介绍如何使用PoL转换器降低VRM去耦电容中的电流路径引起的寄生阻抗。为了获得最佳性能,垂直轴和水平轴上的电流环路应尽可能短。将电流环路放置在尽可能靠近负载的位置,并将电源走线保持在外层,可有效减少通孔长度。
适当的过孔放置也是降低寄生电感的关键。因此,建议在尽可能靠近每个电容器焊盘的位置放置多个过孔,以减少过孔的总寄生电感以及流过每个过孔的电流。
-
电源
+关注
关注
184文章
17740浏览量
250540 -
转换器
+关注
关注
27文章
8714浏览量
147314 -
电压
+关注
关注
45文章
5608浏览量
115882 -
PDN
+关注
关注
0文章
83浏览量
22708 -
供电网络
+关注
关注
0文章
15浏览量
7491
发布评论请先 登录
相关推荐
评论