微流控纺丝化学综述与展望

描述

近年来,微纳纤维以其优异的纳米尺度效应、高比表面积及丰富多孔的结构在医学、航天环境保护等领域有着广阔的应用,成为当今先进材料极具挑战的前沿方向之一。其均匀的微纳尺寸被认为是一种成本低廉且易于操纵的微反应器。2019年,南京工业大学材料化学工程国家重点实验室、化工学院陈苏教授团队提出微流控(microfluidic)纺丝化学(Fiber Spinning Chemistry,FSC)的概念(Adv. Sci. 2019, 6(22), 1901694),即在微流控纺丝过程中,以微纳纤维为载体,借助微流控芯片,将反应物在纺丝过程中原位发生反应生成纳米纤维杂化材料,利用微纳纤维纳米反应器的限域效应,可以方便地制备出先进的纳米材料,此类纳米材料不易团聚,制备过程无废水产生,是一条方便绿色合成纳米材料的方法,受到广泛关注。

近期,南京工业大学材料化学工程国家重点实验室、化工学院陈苏教授团队在以往长期研究的基础上,撰写了微流控纺丝化学及应用的综述,全面总结了先进FSC策略与应用。尤其重点讨论了微流控芯片在FSC过程中的调节作用。此外,还总结了FSC策略在荧光纳米材料合成、多维纤维非织造布和全天候智能纺织品方面的应用。

芯片

图1 纺丝化学的原理、策略和应用示意图  

该文章以“Recent advances in microfluidic fiber-spinning chemistry”为题发表在Journal of Polymer Science期刊上。南京工业大学硕士研究生宋研为第一作者,南京工业大学陈苏教授、于晓晴博士后为通讯作者。

微流控纺丝化学的分类

微流控技术是一项能够对微通道中的流体进行精确和系统操纵的先进技术。该技术能够在微平台上灵活组合多功能组件,在微流控芯片内实现微流控纺丝化学反应,与传统纺丝方法相比,此纺丝过程不再是一种物理牵伸的过程,而是一个纺丝化学的过程,因此赋予了纤维多功能性与变化性,且具有反应过程连续且高度可控、安全可靠、绿色环保和易放大等优势。

FSC策略通过在纺丝过程中使用微/纳米纤维作为化学反应的反应器来实现纤维的形态、结构和功能多样性,极大地丰富了纳米纤维纺丝过程中组成、形态和结构调控的内涵。根据微流控纺丝工艺与FSC的结合,可分为微流控FSC、微流控静电FSC和微流控气喷FSC策略。

芯片

图2 微流体纺丝FSC策略

芯片

图3 微流控静电纺丝FSC

芯片

图4 微流体气喷纺丝FSC策略

微流控纺丝化学芯片的设计

微流控芯片使化学反应在有限的空间和温和的条件下进行,不仅避免了大量有毒溶剂的使用,还减少了废产物的生成及能源消耗。同时,微流控芯片可用于精确控制超细纤维中各反应物组成及产物的微观结构与形态。优势在于可以灵活组合、可规模化集成,实现反应的微型化、连续化、自动化和并联规模化。微流控芯片已广泛应用于生物医学、环境监测、刑事科学、食品和商品检验、军事科学和航空航天科学等重要领域。该文重点介绍了微流控芯片在多通道交汇处的几何结构,并将微流控芯片分为T型微流控芯片、Y型微流控芯片和共流微流控芯片。

芯片

图5 Y型微流控芯片

芯片

图6 T型微流控芯片

芯片

图7 共轴流微流控芯片

微流控纺丝化学的应用

微流控FSC策略为原位生产性能优异的功能化微米/纳米级纤维杂化材料提供了有效途径。

芯片

图8 微流控FSC策略制备钙钛矿纳米晶和高荧光CdSe量子点

芯片

图9 FSC纺丝化学在全天候智能纺织品方面的应用

总而言之,该文从FSC制备机理和技术优势两方面对FSC的发展进行了综述与展望。其本质核心是如何实现纤维的工程化、高性能化和结构功能一体化,尤其是实现规模化连续可控制备性能优越的先进纳米材料,更是给纳米材料产业带来了全新视角,同时,提供了一条崭新的微流控纺丝技术可实用化的途径。可以预见FSC策略的广泛应用必将推动功能性纳米纤维的发展。

编辑:黄飞

 

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分