0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

光栅色散介绍

jf_64961214 来源:jf_64961214 作者:jf_64961214 2023-12-11 06:39 次阅读

衍射光栅的主要目的是按波长在空间上散射光。入射到光栅上的白光束在从光栅衍射时将被分离为其分量波长,每个波长沿着不同的方向衍射。色散是测量不同波长衍射光之间的分离(角度或空间)。角色散表示每单位角度的光谱范围,线性分辨率表示每单位长度的光谱范围。

角色散

波长λ和λ+Δλ之间的m阶光谱的角扩展Δβ可以通过微分光栅方程获得,假设入射角α为常数。因此,每单位波长衍射角的变化D为:

D = dβ/dλ = m / dcosβ = (m/d)secβ = Gm secβ (2-13)

其中β为衍射角,量D称为角色散。随着凹槽频率G=1/d的增加,角色散增加(意味着波长之间的角分离随阶数m增加)。

在等式(2-13)中,重要的是要认识到,量m/d不是可以独立于其他参数比率;将光栅方程代入方程(2-13)得到以下角色散的一般方程:

D = dβ/dλ = (sinα + sinβ) / λcosβ (2-14)

对于给定的波长,这表明角色散可以被认为仅仅是入射角和衍射角的函数。当我们考虑Littrow配置(α=β)时,这一点变得更加清楚,在这种情况下,方程(2-14)简化为:

D = dβ/dλ = (2/λ) tanβ, in Littrow. (2-15)

在Littrow使用中,当|β|从10°增加到63°时,可以从方程(2-15)中看出角色散增加了10倍,而与所考虑的光谱阶数或波长无关。一旦确定了衍射角β,就必须选择是以低衍射级使用细间距光栅(小d),还是以高衍射级使用粗间距光栅(大d),如阶梯光栅。[然而,细间距光栅将提供更大的自由光谱范围;]

线色散

对于给定的m阶衍射波长λ(对应于衍射角β),光栅系统的线色散是角色散D和系统有效焦距r'(β)的乘积:

r'D = r'(dβ/dλ) = mr'/dcosβ = (mr'/d)secβ = Gmr'secβ (2-16)

量r'Δβ=Δl是沿着光谱的位置变化(实际距离,而不是波长)。定义焦距r'(β),以明确地表明它可能取决于衍射角β(而衍射角β又取决于λ)。

倒数线色散P,更常被考虑;它只是r’D的倒数:

P = dcosβ / mr' (2-17)

通常以nm/mm测量(其中d以nm表示,r’以mm表示)。量P是波长(以nm为单位)的变化的量度,该波长(以mm为单位)对应于沿着光谱的位置的变化。[需要注意的是,一些作者使用P来表示1/sinΦ的量,其中Φ是光谱与垂直于衍射射线的线所成的角度(见图2-6);为了避免混淆,我们将1/sinφ的量称为倾斜因子。]当特定波长的像平面不垂直于衍射射线时(即,当Φ≠90°时),必须将P乘以倾斜因子,以获得像平面中正确的倒数线性色散。

wKgaomV2PiGANTMWAAC1hN2XSUs658.png

图2-6 记录的光谱图像不需要位于垂直于衍射射线的平面内(即Φ≠90°)

审核编辑 黄宇

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 光栅
    +关注

    关注

    0

    文章

    288

    浏览量

    27534
  • 光谱
    +关注

    关注

    4

    文章

    831

    浏览量

    35229
收藏 人收藏

    评论

    相关推荐

    VirtualLab Fusion应用:色散介质中的脉冲展宽

    摘要 超短脉冲是激光材料加工应用中一个很有前途的工具。一方面,超短脉冲通常在热控制和精度等方面显示出优越性;另一方面,由于色散效应,在通过一个完整的光学系统传播后保持脉冲持续时间可能是一个挑战
    发表于 01-03 09:30

    对超短脉冲的色散效应的研究

    在现代光学系统中,超快现象经常被应用于各种各样的场合。由于这种短脉冲的光谱带宽很大,色散效应在这些系统的设计和分析中起着重要作用。因此,为了确保准确和合适的建模,系统中的所有色散效应都必须
    发表于 12-25 15:29

    多模光纤的折射率和色散介绍

    本文介绍了多模光纤的折射率和色散。 随着纤芯直径的粗细不同,光纤中传输模式的数量多少也不同。当光纤纤芯的几何尺寸远大于光波波长时,光在波导光纤中会以多种模式进行传播。但这会带来了一个问题:不同模式
    的头像 发表于 12-17 10:25 323次阅读
    多模光纤的折射率和<b class='flag-5'>色散</b><b class='flag-5'>介绍</b>

    衍射光栅介绍及应用

    衍射光栅介绍及应用 Diffraction Gratings “我们很难找出另一种像衍射光栅这样的,给众多科学领域带来更为重要信息的简单器件。” ——George R. Harrison
    的头像 发表于 12-09 11:39 162次阅读
    衍射<b class='flag-5'>光栅</b>的<b class='flag-5'>介绍</b>及应用

    全场景智能光栅

    光栅
    SASDSAS
    发布于 :2024年11月12日 22:06:58

    光纤光栅的主要作用有哪些

    : 通信领域 波分复用(WDM) :光纤光栅可以作为波长选择器,用于多波长信号的复用和解复用,提高光纤通信系统的带宽和传输效率。 色散补偿 :光纤光栅可以用于补偿光纤通信中的色散,提高
    的头像 发表于 09-24 11:15 523次阅读

    光栅控制器s是什么意思

    光栅控制器中的“S”具体含义可能因不同品牌、型号的光栅控制器而异,且并非所有光栅控制器都会直接使用“S”作为特定功能的标识。 有效敏感区(Sensitive Area) :在某些光栅
    的头像 发表于 09-23 18:07 405次阅读

    光栅解码器与光栅带的位置有关系吗

    光栅解码器与光栅带(或光栅条)的位置确实存在密切关系。在UV打印机或其他需要精确定位和测量的设备中,光栅解码器和光栅带共同工作,以确保设备的
    的头像 发表于 09-23 17:55 386次阅读

    光纤光栅解调仪工作原理是什么

    光纤光栅解调仪是一种用于测量和分析光纤光栅(Fiber Bragg Gratings, FBGs)的设备。光纤光栅是一种特殊的光纤,其内部折射率周期性变化,能够反射特定波长的光而允许其他波长的光通
    的头像 发表于 09-23 16:53 1075次阅读

    双闪耀光栅介绍

    使用复制工艺,可以将由两个不同的主光栅制成的复制光栅组合成单个光栅。 具有不同凹槽间距的两个(或多个)光栅可以以这种方式组合。然而,由于每个凹槽图案的
    的头像 发表于 08-19 06:25 250次阅读
    双闪耀<b class='flag-5'>光栅</b><b class='flag-5'>介绍</b>

    凹面衍射光栅

    凹面反射光栅可以被建模为分散的凹面镜;它可以被认为是通过其孔来反射和聚焦光,并通过其凹槽图案来分散光。凹槽图案还可以有助于像差减少的凹面光栅聚焦。 自从Henry Rowland在一百多年前发明凹面
    的头像 发表于 08-16 06:26 261次阅读

    选择光栅时应注意什么?

    Littrow构型。在系统中接近这个角度会产生大的效率。 凹槽密度或频率通常是指定的,这是凹槽间距(d)的倒数。光学系统的一个关键特性是其色散水平,但这取决于光栅的特性和使用方式。在不知道其他系统细节的情况下,不能给光栅本身一
    的头像 发表于 08-02 06:26 259次阅读
    选择<b class='flag-5'>光栅</b>时应注意什么?

    衍射光栅的应用介绍

    光栅用于各种不同的应用,但常见的系统包括: 单色仪 单色仪使用凹面或平面光栅以及凹面镜从入射光中选择窄波段。如果白色光源入射到其中一个设备上,它们可以过滤掉除预期窄输出波段外的所有波长。图1展示了
    的头像 发表于 08-01 06:21 376次阅读
    衍射<b class='flag-5'>光栅</b>的应用<b class='flag-5'>介绍</b>

    光栅传感器的应用和选型指南

    光栅传感器的应用和选型指南 光栅传感器是一种常见的传感器类型,能够通过测量光线的强度和位置,将光信号转化为电信号。它在许多不同的领域和应用中起着重要的作用。 首先,让我们来了解一下光栅传感器
    的头像 发表于 03-07 17:14 1503次阅读

    光栅传感器的工作原理 光栅传感器的应用

    光栅传感器是一种检测光信号的传感器,工作原理是基于光的干涉。它由光源、光栅和光接收器三部分组成。光源发射的光经过光栅后产生干涉条纹,再由光接收器接收,通过分析干涉条纹的形态变化来实现对光信号的检测
    的头像 发表于 02-18 13:33 2811次阅读