射频器件概述和制造工艺

描述

射频器件概述

射频器件是无线连接的核心,是实现信号发送和接收的基础零件,有着广泛的应用。

射频器件包括射频开关和LNA,射频PA,滤波器,天线Tuner和毫米波FEM等

其中滤波器占射频器件市场额约50%,射频PA占约30%,射频开关和LNA占约10%,其他占约10%。

可以看到,滤波器和PA是射频器件的重要部分,PA负责发射通道的信号放大,滤波器负责发射机接收信号的滤波。

目前,射频器件的主要市场如下:

手机和通讯模块市场,约占80%;

WIFI路由器市场,约占9%;

通讯基站市场,约占9%;

NB-IoT市场,约占2%。

如今随着5G技术的日趋成熟,商业化趋势正在加速。

5G需要支持新的频段和通信制式,作为无线连接的核心,射频前端中的滤波器、功率放大器、开关、天线、调谐器等核心器件成为当前市场的风口。

分析机构预测,到2023年射频前端市场规模有望突破352亿美元,年复合增长率达到14%。

快速增长的市场让行业看到了机会,新的射频公司在不断地涌现出来,国内射频厂商打造自主射频供应链就成为很多厂商的追求,但纵观现状,差距仍旧明显。

着眼国内市场,在本土射频厂商的合力下,2G射频器件替代率高达95%,3G替代率85%,4G替代率只有15%,而在5G射频领域替代率基本为零。

此外,射频器件各工艺制造和封测均可由国内厂商完成。

国内射频芯片产业链已经基本成熟,从设计到晶圆代工,再到封测,已经形成完整的产业链。

但是从国际竞争力来讲,国内的射频设计水平还处在中低端,上述射频器件厂商,销售额和市场占比与国际大厂相比仍存在较大差距。

可见,国内厂商依然在起步阶段,还有很大的成长空间。

反观国际射频产业市场布局,根据相关机构统计数据显示,在SAW滤波器中,全球80%的市场份额被村田(滤波器典型产品:SF2433D、SF2038C-1、SF2037C-1 等)、TDK(滤波器典型产品:DEA162690LT-5057C1、DEA165150HT-8025C2、DEA252593BT-2074A3 )、TAIYO YUDEN(射频器件:D5DA737M5K2H2-Z、AH212M245001-T 等)等瓜分,在4G/5G中应用的BAW滤波器则被博通和Qorvo占据了95%的市场空间,PA芯片则超过全球90%的市场集中在Skyworks、Qorvo和博通手中。

在占据绝大部分市场之余,上述射频厂商基本完成了射频前端全产品线布局,拥有专用的制造和封装链条,以IDM模式巩固在设计能力、产品性能以及产能掌控的巨大优势。

同时,专利技术储备也让射频巨头有了更宽阔的护城河,使后来者短期内难以超越。

射频器件的挑战与创新

4G到5G的演进过程中,射频器件的复杂度逐渐提升qi,产品在设计、工艺、材料等方面都将发生递进式的变化。

同时,射频前端仍面临许多诸如功耗、尺寸、天线数量、芯片设计、温漂、信号干扰、不同类型信号和谐共存等技术端的难题。

如何解决这些问题,成为当下业界关注的焦点,也是射频器件的创新所在。

随着半导体材料的发展,Si、GaAs、GaN等射频材料,陶瓷、玻璃等封装基板材料更迭带来的功耗、效率、发热问题、尺寸等方面的改善之于射频器件的发展自然是重要的创新之处。

但在材料创新之外,射频器件还有哪些创新的途径?

制造工艺

目前,射频器件涉及的主要工艺为GaAs、SOI、CMOS、SiGe等。

GaAs:

GaAs的电子迁移速率较好,适合用于长距离、长通信时间的高频威廉希尔官方网站 。

GaAs元件因电子迁移速率比Si高很多,因此采用特殊的工艺,早期为MESFET金属半导体场效应晶体管,后面演变为HEMT(高速电子迁移率晶体管),pHEMT(介面应变式高电子迁移电晶体),目前为HBT(异质接面双载子晶体管)。

GaAs生产方式和传统的硅晶圆生产方式大不相同,GaAs需要采用磊晶技术制造,这种磊晶圆的直径通常为4-6英寸,比硅晶圆的12英寸要小得多。

磊晶圆需要特殊的机台,同时砷化镓原材料成本高出硅很多,最终导致GaAs成品IC成本比较高;

SOI:

SOI工艺的优势在于可集成逻辑与控制功能,不需要额外的控制芯片;

CMOS:

CMOS工艺的优势在于可以将射频、基频与存储器等组件合而为一的高整合度,并同时降低组件成本;

SiGe:

近年来,SiGe已成了最被重视的无线通信IC制程技术之一。

依材料特性来看,SiGe高频特性良好,材料安全性佳,导热性好,而且制程成熟、整合度高,具成本较低的优势。

SiGe既拥有硅工艺的集成度、良率和成本优势,又具备第3到第5类半导体(如砷化镓(GaAs)和磷化铟(InP)在速度方面的优点。

只要增加金属和介质叠层来降低寄生电容和电感,就可以采用SiGe半导体技术集成高质量无源部件。

SiGe工艺几乎能够与硅半导体超大规模集成威廉希尔官方网站 中的所有新工艺技术兼容,是未来的趋势。

不过SiGe要想取代砷化镓的地位还需要继续在击穿电压、截止频率、功率等方面继续努力。

射频PA采用的工艺分别是GaAs、SOI、CMOS和SiGe;

射频开关采用SOI、GaAs工艺;LTE LNA采用的工艺多为SOI、CMOS。

进入5G时代,Sub-6GHz和毫米波阶段各射频元器件的材料和技术可能会有所变化。

SOI有可能成为重要技术,具有制作多种元器件的潜力,同时后续有利于集成。

解决天线问题

以手机为例,由于5G技术的特殊要求,从智能手机系统架构上来看,5G需求更高的数据速率,需要更多的天线。

这些天线包括多频带载波聚合、4x4 MIMO与Wi-Fi MIMO。

从而带来了在天线调谐方面、放大器线性和功耗,还有其他系统干扰方面上的挑战。

同时,天线数量增多留给天线空间越来越小。

因此,射频厂商可以把GPS、WiFi、中频、高频和超高频等射频通道共用一个天线,可以达到减少天线数量,节省空间的目的。

现今毫米波天线主流成熟的方案为AiP(antenna-in-package)的模块化设计,AiP方案主要因其RFIC与毫米波天线阵列相距较近,而有低路损的优点,故AiP方案已被众多学者专家深入地进行研究、设计。

目前AiP封装天线技术正沿着两个技术路径发展。

一个称之为扇出型封装天线技术(FO-AiP),另外一个称之为覆晶型封装天线技术(FC-AiP)。

两者区别在于一个有基板(Substrate),一个没基板。

集成度

未来滤波器等射频器件将呈现向小型化、改进器件形式、组合式迈进的趋势。

就像十年前的4G,LTE连接建立在已有的3G技术之上一样;

早期的5G功能是通过添加独立的芯片组到现有的LTE设计中实现,这意味着5G组件基本上像是用螺栓外挂在智能手机设计上,而不是被融合进核心芯片组中,但对于芯片尺寸、性能和功耗都带来了一定影响。

例如单模5G调制解调器,5G射频收发器和单频段5G 射频前端,它们独立与现有的LTE 射频链路。

这种初代5G调制解调器设计还需要额外的支持部件。

因此,随着行业的成熟,提高射频器件集成度是必然的发展方向,业界将期待核心威廉希尔官方网站 设计的进一步优化。

一个高度集成和紧凑的射频架构用来在一个设备中同时支持Sub 6GHz和毫米波段5G将成为人们的期待。 

封装方式

5G时代,射频厂商愈加关注射频前端解决方案中的封装创新,如更紧密的元件布局、双面贴装、共形/划区屏蔽、高精度/高速SMT等。

5G频段分为毫米波和sub-6G,越高频段对于小型化封装的要求也就越高,通过新型封装形式去逐步实现器件封装的微型化、可量产、低成本、高精度、集成化。

为将天线元件与射频组件集成用于5G移动通信,市场上提出了不同架构的多种封装解决方案。基于成本和成熟的供应链,扇出型WLP/PLP封装得益于较高的信号性能、低损耗和缩小的外形尺寸,是一种很有前景的AiP集成解决方案,但它需要双面重布线层(RDL)。

除少数厂商,大部分OSAT尚未准备好利用该技术大规模制造。

在系统级封装(SiP)部分,分为芯片/晶圆级滤波器、开关和放大器等各种射频器件的一级封装以及在表面贴装(SMT)阶段进行的二级SiP封装,其中各种器件与无源器件一起组装在SiP基板上。

SiP提供了所需要的小尺寸、更短的信号路径和更低的损耗。

同时由于不断增加的功能对集成度有了更高要求,市场对SiP封装方法也提出了更多需求。

可见,关于射频器件封装的理想解决方案近年来有许多研究,致力于在成本、体积和性能需求之间谋求平衡,未来也将是射频器件的创新方式之一。

审核编辑:汤梓红

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分