0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

深度学习是如何从概念发展为现实的?

EdXK_AI_News 来源:未知 作者:胡薇 2018-05-31 10:06 次阅读

在二十世纪五十年代就存在深度学习的概念了。麦肯锡全球研究院发文简要回顾了深度学习是如何从概念发展为现实的,而使之实现的关键人物又是谁。

文章表示,要书写深度学习的完整历史还为时过早,有些细节尚存在争议,但是我们已经能追寻其公认的起源概貌,虽然还不完整,也能确定一些先驱者了。沃伦·麦卡洛克(WarrenMcCulloch)和沃尔特·皮茨(Walter Pitts)就名列其中。他们早在1943年就提出了人工神经元,这是大脑中“神经网络”的计算模型。还有美国斯坦福大学(Stanford University)的伯纳德·威德罗(BernardWidrow)和泰德·霍夫(Ted Hoff),他们在二十世纪五十年代末期开发了一种神经网络应用,降低电话线中的噪音。

同一时期,美国心理学家弗兰克·罗森布拉特(Frank Rosenblatt)引入了“感知器”这种设备的概念,模拟大脑的神经结构,并展现出学习的能力。后来,美国麻省理工学院(MIT)的马文·明斯基(Marvin Minsky)和西摩·帕普特(SeymourPapert)在其1969年出版的书《感知器》中,用数学的方法展示了感知器只能进行很基础的任务,所以这项研究暂停。他们的书还讨论了训练多层神经网络的难点。

1986年,加拿大多伦多大学(University of Toronto)的杰弗里·辛顿(Geoffrey Hinton)与同事大卫·鲁姆哈特(DavidRumelhart)和罗纳德·威廉姆斯(Ronald Williams)发表了目前很著名的反向传播训练算法,解决了这一训练难题,但有些业内人士指出芬兰数学家赛普·林纳因马(SeppoLinnainmaa)早在二十世纪六十年代就已经发明了反向传播。美国纽约大学(New York University)的杨立昆(Yann LeCun)率先将神经网络应用于图像识别任务,他在1998年发表的文章中定义了卷积神经网络,这种神经网络模拟人类的视觉皮层。同期,约翰·霍普菲尔德(JohnHopfield)推广了“霍普菲尔德”网络,这是首个循环神经网络。1997年,尔根·施米德休伯(JürgenSchmidhuber)和赛普·霍克赖特(Sepp Hochreiter)进一步扩展了该网络,他们引入了长短期记忆模型(long-short termmemory, LSTM),极大地提高了循环神经网络的效率和实用性。2012年,辛顿和他的学生在著名的 ImageNet 竞赛中取得了突出的结果,彰显了深度学习的强大。该竞赛以李飞飞等人整理的数据集为基础。与此同时,杰弗里·迪恩(JeffDean)和吴恩达(Andrew Ng)正在谷歌大脑(Google Brain)进行大规模图像识别方面的突破性工作。

深度学习也增强了强化学习这一已存在的领域,理查德·萨顿(Richard Sutton)就是其中一位顶尖的研究人员,他牵头让谷歌DeepMind开发的系统取得了多次棋类比赛的胜利。2014年,伊恩·古德费洛(IanGoodfellow)发表了一篇关于生成式对抗网络的文章,这种网络与强化学习已成为了该领域近期多个研究的焦点。

人工智能(AI)能力的持续进步让斯坦福大学启动了“人工智能百年研究”(One Hundred Year Study on Artificial Intelligence)项目。该项目由微软研究院院长埃里克·霍维茨(EricHorvitz)发起,是基于他和微软研究院的同事所进行的长期研究。过去几年里,众多研究先驱的研究结果和指导让我们受益良多。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 深度学习
    +关注

    关注

    73

    文章

    5504

    浏览量

    121227

原文标题:深度学习的起源与先行者

文章出处:【微信号:AI_News,微信公众号:人工智能快报】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    NPU在深度学习中的应用

    随着人工智能技术的飞速发展深度学习作为其核心驱动力之一,已经在众多领域展现出了巨大的潜力和价值。NPU(Neural Processing Unit,神经网络处理单元)是专门
    的头像 发表于 11-14 15:17 639次阅读

    GPU深度学习应用案例

    GPU在深度学习中的应用广泛且重要,以下是一些GPU深度学习应用案例: 一、图像识别 图像识别是深度学习
    的头像 发表于 10-27 11:13 404次阅读

    AI大模型与深度学习的关系

    人类的学习过程,实现对复杂数据的学习和识别。AI大模型则是指模型的参数数量巨大,需要庞大的计算资源来进行训练和推理。深度学习算法AI大模型
    的头像 发表于 10-23 15:25 849次阅读

    FPGA做深度学习能走多远?

    。FPGA的优势就是可编程可配置,逻辑资源多,功耗低,而且赛灵思等都在极力推广。不知道用FPGA做深度学习未来会怎样发展,能走多远,你怎么看。 A:FPGA 在深度
    发表于 09-27 20:53

    深度学习算法在嵌入式平台上的部署

    随着人工智能技术的飞速发展深度学习算法在各个领域的应用日益广泛。然而,将深度学习算法部署到资源受限的嵌入式平台上,仍然是一个具有挑战性的任
    的头像 发表于 07-15 10:03 1466次阅读

    深度学习中的时间序列分类方法

    发展,基于深度学习的TSC方法逐渐展现出其强大的自动特征提取和分类能力。本文将从多个角度对深度学习在时间序列分类中的应用进行综述,探讨常用
    的头像 发表于 07-09 15:54 985次阅读

    深度学习在视觉检测中的应用

    深度学习是机器学习领域中的一个重要分支,其核心在于通过构建具有多层次的神经网络模型,使计算机能够大量数据中自动学习并提取特征,进而实现对复
    的头像 发表于 07-08 10:27 741次阅读

    深度学习与nlp的区别在哪

    深度学习和自然语言处理(NLP)是计算机科学领域中两个非常重要的研究方向。它们之间既有联系,也有区别。本文将介绍深度学习与NLP的区别。 深度
    的头像 发表于 07-05 09:47 955次阅读

    基于深度学习的小目标检测

    在计算机视觉领域,目标检测一直是研究的热点和难点之一。特别是在小目标检测方面,由于小目标在图像中所占比例小、特征不明显,使得检测难度显著增加。随着深度学习技术的快速发展,尤其是卷积神经网络(CNN
    的头像 发表于 07-04 17:25 914次阅读

    人工智能、机器学习深度学习是什么

    在科技日新月异的今天,人工智能(Artificial Intelligence, AI)、机器学习(Machine Learning, ML)和深度学习(Deep Learning, DL)已成为
    的头像 发表于 07-03 18:22 1320次阅读

    深度学习与卷积神经网络的应用

    随着人工智能技术的飞速发展深度学习和卷积神经网络(Convolutional Neural Network, CNN)作为其中的重要分支,已经在多个领域取得了显著的应用成果。图像识
    的头像 发表于 07-02 18:19 921次阅读

    深度学习与传统机器学习的对比

    在人工智能的浪潮中,机器学习深度学习无疑是两大核心驱动力。它们各自以其独特的方式推动着技术的进步,众多领域带来了革命性的变化。然而,尽管它们都属于机器
    的头像 发表于 07-01 11:40 1414次阅读

    深度解析深度学习下的语义SLAM

    随着深度学习技术的兴起,计算机视觉的许多传统领域都取得了突破性进展,例如目标的检测、识别和分类等领域。近年来,研究人员开始在视觉SLAM算法中引入深度学习技术,使得
    发表于 04-23 17:18 1305次阅读
    <b class='flag-5'>深度</b>解析<b class='flag-5'>深度</b><b class='flag-5'>学习</b>下的语义SLAM

    为什么深度学习的效果更好?

    导读深度学习是机器学习的一个子集,已成为人工智能领域的一项变革性技术,在从计算机视觉、自然语言处理到自动驾驶汽车等广泛的应用中取得了显著的成功。深度
    的头像 发表于 03-09 08:26 633次阅读
    为什么<b class='flag-5'>深度</b><b class='flag-5'>学习</b>的效果更好?

    什么是深度学习?机器学习深度学习的主要差异

    2016年AlphaGo 击败韩国围棋冠军李世石,在媒体报道中,曾多次提及“深度学习”这个概念
    的头像 发表于 01-15 10:31 1093次阅读
    什么是<b class='flag-5'>深度</b><b class='flag-5'>学习</b>?机器<b class='flag-5'>学习</b>和<b class='flag-5'>深度</b><b class='flag-5'>学习</b>的主要差异