0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

深度学习不是万灵药 神经网络3D建模其实只是图像识别

DPVg_AI_era 来源:yxw 2019-06-17 11:21 次阅读

随着深度学习的大热,许多研究都致力于如何从单张图片生成3D模型。但近期一项研究表明,几乎所有基于深度神经网络的3D中重建工作,实际上并不是重建,而是图像分类。深度学习并不是万能的!

深度学习并不是万灵药。

近几年,随着深度学习的大热,许多研究攻克了如何从单张图片生成3D模型。从某些方面似乎再次验证了深度学习的神奇——doing almost the impossible。

但是,最近一篇文章却对此提出了质疑:几乎所有这些基于深度神经网络的3D重建的工作,实际上并不是进行重建,而是进行图像分类。

arXiv地址:

https://arxiv.org/pdf/1905.03678.pdf

在这项工作中,研究人员建立了两种不同的方法分别执行图像分类和检索。这些简单的基线方法在定性和定量上都比最先进的方法产生的结果要更好。

正如伯克利马毅教授评价:

几乎所有这些基于深度神经网络的3D重建的工作(层出不穷令人眼花缭乱的State of the Art top conferences 论文),其实还比不上稍微认真一点的nearest neighbor baselines。没有任何工具或算法是万灵药。

至少在三维重建问题上,没有把几何关系条件严格用到位的算法,都是不科学的——根本谈不上可靠和准确。

并非3D重建,而只是图像分类?

基于对象(object-based)的单视图3D重建任务是指,在给定单个图像的情况下生成对象的3D模型。

如上图所示,推断一辆摩托车的3D结构需要一个复杂的过程,它结合了低层次的图像线索、有关部件结构排列的知识和高层次的语义信息

研究人员将这种情况称为重建和识别:

重构意味着使用纹理、阴影和透视效果等线索对输入图像的3D结构进行推理。

识别相当于对输入图像进行分类,并从数据库中检索最合适的3D模型。

虽然在其它文献中已经提出了各种体系结构和3D表示,但是用于单视图3D理解的现有方法都使用编码器——解码器结构,其中编码器将输入图像映射到潜在表示,而解码器执行关于3D的非平凡(nontrivial)推理,并输出空间的结构。

为了解决这一任务,整个网络既要包含高级信息,也要包含低级信息。

而在这项工作中,研究人员对目前最先进的编解码器方法的结果进行了分析,发现它们主要依靠识别来解决单视图3D重建任务,同时仅显示有限的重建能力。

为了支持这一观点,研究人员设计了两个纯识别基线:一个结合了3D形状聚类和图像分类,另一个执行基于图像的3D形状检索。

在此基础上,研究人员还证明了即使不需要明确地推断出物体的3D结构,现代卷积网络在单视图3D重建中的性能是可以超越的。

在许多情况下,识别基线的预测不仅在数量上更好,而且在视觉上看起来更有吸引力。

研究人员认为,卷积网络在单视图3D重建任务中是主流实验程序的某些方面的结果,包括数据集的组成和评估协议。它们允许网络找到一个快捷的解决方案,这恰好是图像识别。

纯粹的识别方法,性能优于先进的神经网络

实验基于现代卷积网络,它可以从一张图像预测出高分辨率的3D模型。

方法的分类是根据它们的输出表示对它们进行分类:体素网格(voxel grids)、网格(meshes)、点云和深度图。为此,研究人员选择了最先进的方法来覆盖主要的输出表示,或者在评估中已经清楚地显示出优于其他相关表示。

研究人员使用八叉树生成网络(Octree Generating Networks,OGN)作为直接在体素网格上预测输出的代表性方法。

与早期使用这种输出表示的方法相比,OGN通过使用八叉树有效地表示所占用的空间,可以预测更高分辨率的形状。

还评估了AtlasNet作为基于表面的方法的代表性方法。AtlasNet预测了一组参数曲面,并在操作这种输出表示的方法中构成了最先进的方法。它被证明优于直接生成点云作为输出的唯一方法,以及另一种基于八叉树的方法。

最后,研究人员评估了该领域目前最先进的Matryoshka Networks。该网络使用由多个嵌套深度图组成的形状表示,,这些深度图以体积方式融合到单个输出对象中。

对于来自AtlasNet的基于IoU的表面预测评估,研究人员将它们投影到深度图,并进一步融合到体积表示。 对于基于表面的评估指标,使用移动立方体算法从体积表示中提取网格。

研究人员实现了两个简单的基线,仅从识别的角度来处理问题。

第一种方法是结合图像分类器对训练形状进行聚类;第二个是执行数据库检索。

在聚类方面的基线中,使用K-means算法将训练形状聚类为K个子类别。

在检索基线方面,嵌入空间由训练集中所有3D形状的两两相似矩阵构造,通过多维尺度将矩阵的每一行压缩为一个低维描述符。

研究人员根据平均IoU分数对所有方法进行标准比较。

研究人员发现,虽然最先进的方法有不同体系结构的支持,但在执行的时候却非常相似。

有趣的是,检索基线是一种纯粹的识别方法,在均值和中位数IoU方面都优于所有其他方法。简单的聚类基线具有竞争力,性能优于AtlasNet和OGN。

但研究人员进一步观察到,一个完美的检索方法(Oracle NN)的性能明显优于所有其他方法。值得注意的是,所有方法的结果差异都非常大(在35%到50%之间)。

这意味着仅依赖于平均IoU的定量比较不能提供这种性能水平的全貌。 为了更清楚地了解这些方法的行为,研究人员进行了更详细的分析。

每类mIoU比较。

总的来说,这些方法在不同的类之间表现出一致的相对性能。检索基线为大多数类生成最佳重构。所有类和方法的方差都很大。

mIoU与每个类的训练样本数量。

研究人员发现一个类的样本数量和这个类的mIoU分数之间没有相关性。所有方法的相关系数c均接近于零。

定性的结果

聚类基线产生的形状质量与最先进的方法相当。 检索基线通过设计返回高保真形状,但细节可能不正确。 每个样本右下角的数字表示IoU。

左:为所选类分配IoU。 基于解码器的方法和显式识别基线的类内分布是类似的。 Oracle NN的发行版在大多数类中都有所不同。 右图:成对Kolmogorov-Smirnov检验未能拒绝两个分布的无效假设的类数的热图。

研究中的一些问题

参照系的选择

我们尝试使用视角预测网络对聚类基线方法进行扩展,该方法将重点回归摄像头的方位角和仰角等规范框架,结果失败了,因为规范框架对每个对象类都有不同的含义,即视角网络需要使用类信息来解决任务。我们对检索基线方法进行了重新训练,将每个训练视图作为单独样本来处理,从而为每个单独的对象提供空间。

量度标准

平均IoU通常在基准测试中被用作衡量单视图图像重建方法的主要量化指标。如果将其作为最优解的唯一衡量指标,就可能会出现问题,因为它在对象形状的质量值足够高时才能有效预测。如果该值处于中低水平,表明两个对象的形状存在显着差异。

如上图所示,将一个汽车模型与数据集中的不同形状的对象进行了比较,只有 IoU分数比较高(最右两张图)时才有意义,即使IoU=0.59,两个目标可能都是完全不同的物体,比较相似度失去了意义。

倒角距离(Chamfer distance)

如上图所示,两者目标椅子与下方的椅子的下半部分完美匹配,但上半部分完全不同。但是根据得分,第二个目标要好于第一个。由此来看,倒角距离这个量度会被空间几何布局显著干扰。为了可靠地反映真正的模型重建性能,好的量度应该具备对几何结构变化的高鲁棒性。

F-score

我们绘制了以观察者为中心的重建方式的F分数的不同距离阈值d(左)。在 d =重建体积边长的2%的条件下,F分数绝对值与当前范围的 mIoU分数相同,这并不能有效反映模型的预测质量。

因此,我们建议将距离阈值设为重建模型体积边长的1%以下来考察F值。如上图(右)中所示,在阈值d = 1%时,F分数为0.5以上。只有一小部分模型的形状被精确构建出来,预设任务仍然远未解决。我们的检索基线方法不再具有明显的优势,进一步表明使用纯粹的识别方法很难解决这个问题。

现有的基于CNN的方法在精度上表现良好,但丢失了目标的部分结构

未来展望

在这项研究中,研究人员通过重建和识别来推断单视图3D重建方法的范围。

工作展示了简单的检索基线优于最新、最先进的方法。分析表明,目前最先进的单视图3D重建方法主要用于识别,而不是重建。

研究人员确定了引起这种问题的一些因素,并提出了一些建议,包括使用以视图为中心的坐标系和鲁棒且信息量大的评估度量(F-score)。

另一个关键问题是数据集组合,虽然问题已经确定,但没有处理。研究人员正努力在以后的工作中纠正这一点。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 图像识别
    +关注

    关注

    9

    文章

    520

    浏览量

    38269
  • 3D建模
    +关注

    关注

    0

    文章

    35

    浏览量

    9768
  • 深度学习
    +关注

    关注

    73

    文章

    5503

    浏览量

    121151

原文标题:深度学习不是万灵药!神经网络3D建模其实只是图像识别?

文章出处:【微信号:AI_era,微信公众号:新智元】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    深度学习中的卷积神经网络模型

    深度学习近年来在多个领域取得了显著的进展,尤其是在图像识别、语音识别和自然语言处理等方面。卷积神经网络作为
    的头像 发表于 11-15 14:52 337次阅读

    卷积神经网络有何用途 卷积神经网络通常运用在哪里

    卷积神经网络(Convolutional Neural Networks,简称CNN)是一种深度学习模型,广泛应用于图像识别、视频分析、自然语言处理、生物信息学等领域。本文将介绍卷积
    的头像 发表于 07-11 14:43 2352次阅读

    pytorch中有神经网络模型吗

    当然,PyTorch是一个广泛使用的深度学习框架,它提供了许多预训练的神经网络模型。 PyTorch中的神经网络模型 1. 引言 深度
    的头像 发表于 07-11 09:59 699次阅读

    如何利用CNN实现图像识别

    卷积神经网络(CNN)是深度学习领域中一种特别适用于图像识别任务的神经网络结构。它通过模拟人类视觉系统的处理方式,利用卷积、池化等操作,自动
    的头像 发表于 07-03 16:16 1365次阅读

    bp神经网络深度神经网络

    Network)有相似之处,但它们之间还是存在一些关键的区别。 一、引言 神经网络是一种模拟人脑神经元结构的计算模型,它由大量的神经元(或称为节点)组成,这些神经元通过权重连接在一起
    的头像 发表于 07-03 10:14 844次阅读

    卷积神经网络的基本结构和工作原理

    卷积神经网络(Convolutional Neural Networks,简称CNN)是一种深度学习模型,广泛应用于图像识别、视频分析、自然语言处理等领域。本文将详细介绍卷积
    的头像 发表于 07-03 09:38 627次阅读

    深度学习与卷积神经网络的应用

    随着人工智能技术的飞速发展,深度学习和卷积神经网络(Convolutional Neural Network, CNN)作为其中的重要分支,已经在多个领域取得了显著的应用成果。从图像识别
    的头像 发表于 07-02 18:19 903次阅读

    卷积神经网络的基本结构及其功能

    卷积神经网络(Convolutional Neural Network,简称CNN)是一种深度学习模型,广泛应用于图像识别、视频分析、自然语言处理等领域。本文将详细介绍卷积
    的头像 发表于 07-02 14:45 1623次阅读

    卷积神经网络图像识别中的应用

    卷积神经网络(Convolutional Neural Networks, CNNs)是一种深度学习模型,广泛应用于图像识别、视频分析、自然语言处理等领域。 1. 卷积
    的头像 发表于 07-02 14:28 1117次阅读

    神经网络建模的适用范围有哪些

    神经网络是一种强大的机器学习技术,可以用于各种不同的应用。以下是一些神经网络建模的适用范围: 图像识别和分类
    的头像 发表于 07-02 11:40 633次阅读

    数学建模神经网络模型的优缺点有哪些

    数学建模神经网络模型是一种基于人工神经网络的数学建模方法,它通过模拟人脑神经元的连接和信息传递机制,对复杂系统进行
    的头像 发表于 07-02 11:36 904次阅读

    深度神经网络模型cnn的基本概念、结构及原理

    深度神经网络模型CNN(Convolutional Neural Network)是一种广泛应用于图像识别、视频分析和自然语言处理等领域的深度学习
    的头像 发表于 07-02 10:11 9737次阅读

    神经网络图像识别中的应用

    随着人工智能技术的飞速发展,神经网络图像识别领域的应用日益广泛。神经网络以其强大的特征提取和分类能力,为图像识别带来了革命性的进步。本文将详细介绍
    的头像 发表于 07-01 14:19 682次阅读

    神经网络架构有哪些

    神经网络架构是机器学习领域中的核心组成部分,它们模仿了生物神经网络的运作方式,通过复杂的网络结构实现信息的处理、存储和传递。随着深度
    的头像 发表于 07-01 14:16 708次阅读

    详解深度学习神经网络与卷积神经网络的应用

    在如今的网络时代,错综复杂的大数据和网络环境,让传统信息处理理论、人工智能与人工神经网络都面临巨大的挑战。近些年,深度学习逐渐走进人们的视线
    的头像 发表于 01-11 10:51 2038次阅读
    详解<b class='flag-5'>深度</b><b class='flag-5'>学习</b>、<b class='flag-5'>神经网络</b>与卷积<b class='flag-5'>神经网络</b>的应用