功率器件
所谓功率半导体器件,以前也被称为电力电子器件,简单来说,就是进行功率处理的,具有处理高电压,大电流能力的半导体器件。其电压处理范围从几十V~几千V,电流能力最高可达几千A。典型的功率处理,包括变频、变压、变流、功率管理等等。
早期的功率半导体器件包括:大功率二极管、晶闸管等等,主要用于工业和电力系统(正因如此,早期才被称为电力电子器件)
后来,随着以功率MOSFET器件为代表的新型功率半导体器件的迅速发展,现在功率半导体器件已经非常广泛, 在计算机、通行、消费电子、汽车电子 为代表的4C行业(computer、communication、consumer electronics、cartronics),功率半导体器件可以说是越来越火,现在不是要节能环保吗,所以就需要对电压电流的运用进行有效的控制,这就与功率器件密不可分! 功率管理集成威廉希尔官方网站 (Power Management IC,也被称为电源管理IC)已经成为功率半导体器件的热点,发展非常迅速噢!
如何正确选择MOSFET管
随着制造技术的发展和进步,系统设计人员必须跟上技术的发展步伐,才能为其设计挑选最合适的电子器件。MOSFET是电气系统中的基本部件,工程师需要深入了解它的关键特性及指标才能做出正确选择。本文将讨论如何根据RDS(ON)、热性能、雪崩击穿电压及开关性能指标来选择正确的MOSFET。
MOSFET的选择
MOSFET有两大类型:N沟道和P沟道。在功率系统中,MOSFET可被看成电气开关。当在N沟道MOSFET的栅极和源极间加上正电压时,其开关导通。导通时,电流可经开关从漏极流向源极。漏极和源极之间存在一个内阻,称为导通电阻RDS(ON)。必须清楚MOSFET的栅极是个高阻抗端,因此,总是要在栅极加上一个电压。如果栅极为悬空,器件将不能按设计意图工作,并可能在不恰当的时刻导通或关闭,导致系统产生潜在的功率损耗。当源极和栅极间的电压为零时,开关关闭,而电流停止通过器件。虽然这时器件已经关闭,但仍然有微小电流存在,这称之为漏电流,即IDSS。
第一步:选用N沟道还是P沟道
为设计选择正确器件的第一步是决定采用N沟道还是P沟道MOSFET。在典型的功率应用中,当一个MOSFET接地,而负载连接到干线电压上时,该MOSFET就构成了低压侧开关。在低压侧开关中,应采用N沟道MOSFET,这是出于对关闭或导通器件所需电压的考虑。当MOSFET连接到总线及负载接地时,就要用高压侧开关。通常会在这个拓扑中采用P沟道MOSFET,这也是出于对电压驱动的考虑。
要选择适合应用的器件,必须确定驱动器件所需的电压,以及在设计中最简易执行的方法。下一步是确定所需的额定电压,或者器件所能承受的最大电压。额定电压越大,器件的成本就越高。根据实践经验,额定电压应当大于干线电压或总线电压。这样才能提供足够的保护,使MOSFET不会失效。就选择MOSFET而言,必须确定漏极至源极间可能承受的最大电压,即最大VDS。知道MOSFET能承受的最大电压会随温度而变化这点十分重要。设计人员必须在整个工作温度范围内测试电压的变化范围。额定电压必须有足够的余量覆盖这个变化范围,确保威廉希尔官方网站
不会失效。设计工程师需要考虑的其他安全因素包括由开关电子设备(如电机或变压器)诱发的电压瞬变。不同应用的额定电压也有所不同;通常,便携式设备为20V、FPGA电源为20~30V、85~220VAC应用为450~600V。
第二步:确定额定电流
第二步是选择MOSFET的额定电流。视威廉希尔官方网站 结构而定,该额定电流应是负载在所有情况下能够承受的最大电流。与电压的情况相似,设计人员必须确保所选的MOSFET能承受这个额定电流,即使在系统产生尖峰电流时。两个考虑的电流情况是连续模式和脉冲尖峰。在连续导通模式下,MOSFET处于稳态,此时电流连续通过器件。脉冲尖峰是指有大量电涌(或尖峰电流)流过器件。一旦确定了这些条件下的最大电流,只需直接选择能承受这个最大电流的器件便可。
选好额定电流后,还必须计算导通损耗。在实际情况下,MOSFET并不是理想的器件,因为在导电过程中会有电能损耗,这称之为导通损耗。MOSFET在“导通”时就像一个可变电阻,由器件的RDS(ON)所确定,并随温度而显著变化。器件的功率耗损可由Iload2×RDS(ON)计算,由于导通电阻随温度变化,因此功率耗损也会随之按比例变化。对MOSFET施加的电压VGS越高,RDS(ON)就会越小;反之RDS(ON)就会越高。对系统设计人员来说,这就是取决于系统电压而需要折中权衡的地方。对便携式设计来说,采用较低的电压比较容易(较为普遍),而对于工业设计,可采用较高的电压。注意RDS(ON)电阻会随着电流轻微上升。关于RDS(ON)电阻的各种电气参数变化可在制造商提供的技术资料表中查到。
技术对器件的特性有着重大影响,因为有些技术在提高最大VDS时往往会使RDS(ON)增大。对于这样的技术,如果打算降低VDS和RDS(ON),那么就得增加晶片尺寸,从而增加与之配套的封装尺寸及相关的开发成本。业界现有好几种试图控制晶片尺寸增加的技术,其中最主要的是沟道和电荷平衡技术。
在沟道技术中,晶片中嵌入了一个深沟,通常是为低电压预留的,用于降低导通电阻RDS(ON)。为了减少最大VDS对RDS(ON)的影响,开发过程中采用了外延生长柱/蚀刻柱工艺。
第三步:确定热要求
选择MOSFET的下一步是计算系统的散热要求。设计人员必须考虑两种不同的情况,即最坏情况和真实情况。建议采用针对最坏情况的计算结果,因为这个结果提供更大的安全余量,能确保系统不会失效。在MOSFET的资料表上还有一些需要注意的测量数据;比如封装器件的半导体结与环境之间的热阻,以及最大的结温。
器件的结温等于最大环境温度加上热阻与功率耗散的乘积(结温=最大环境温度+[热阻×功率耗散])。根据这个方程可解出系统的最大功率耗散,即按定义相等于I2×RDS(ON)。由于设计人员已确定将要通过器件的最大电流,因此可以计算出不同温度下的RDS(ON)。值得注意的是,在处理简单热模型时,设计人员还必须考虑半导体结/器件外壳及外壳/环境的热容量;即要求印刷威廉希尔官方网站 板和封装不会立即升温。
雪崩击穿是指半导体器件上的反向电压超过最大值,并形成强电场使器件内电流增加。该电流将耗散功率,使器件的温度升高,而且有可能损坏器件。半导体公司都会对器件进行雪崩测试,计算其雪崩电压,或对器件的稳健性进行测试。计算额定雪崩电压有两种方法;一是统计法,另一是热计算。而热计算因为较为实用而得到广泛采用。除计算外,技术对雪崩效应也有很大影响。例如,晶片尺寸的增加会提高抗雪崩能力,最终提高器件的稳健性。对最终用户而言,这意味着要在系统中采用更大的封装件。
第四步:决定开关性能
选择MOSFET的最后一步是决定MOSFET的开关性能。影响开关性能的参数有很多,但最重要的是栅极/漏极、栅极/源极及漏极/源极电容。这些电容会在器件中产生开关损耗,因为在每次开关时都要对它们充电。MOSFET的开关速度因此被降低,器件效率也下降。为计算开关过程中器件的总损耗,设计人员必须计算开通过程中的损耗(Eon)和关闭过程中的损耗(Eoff)。MOSFET开关的总功率可用如下方程表达:Psw=(Eon+Eoff)×开关频率。而栅极电荷(Qgd)对开关性能的影响最大。
基于开关性能的重要性,新的技术正在不断开发以解决这个开关问题。芯片尺寸的增加会加大栅极电荷;而这会使器件尺寸增大。为了减少开关损耗,新的技术如沟道厚底氧化已经应运而生,旨在减少栅极电荷。
通过了解MOSFET的类型及了解和决定它们的重要性能特点,设计人员就能针对特定设计选择正确的MOSFET。由于MOSFET是电气系统中最基本的部件之一,选择正确的MOSFET对整个设计是否成功起着关键的作用。
IGBT的正确选择和使用
本文研究了逆变器核心开关器件IGBT主要参数的选择, 分析三相逆变威廉希尔官方网站 拓扑及功率器件IGBT的应用特点,根据其特点选择合适额定电压,额定电流和开关参数。以及优化设计栅电压,克服Miller效应的影响,确保在IGBT应用过程中的可靠性。
0 前言
伴随科学技术的发展和低碳经济的要求,逆变器在各行各业中应用飞速发展,而IGBT是目前逆变器中使用的主流开关器件,也在逆变结构中起核心作用。采用IGBT进行功率变换,能够提高用电效率,改善用电质量。新型IGBT逆变技术是推动我国低碳经济发展战略的突破口,同时缓解能源,资源和环境等方面的压力,加快转变经济增长方式,促进信息化带动工业化, 提高国家经济安全性,起着重要作用,因此,IGBT在逆变器中的正确选择与使用,有着举足轻重的作用。逆变技术对IGBT的参数要求并不是一成不变的,逆变技术已从硬开关技术,移相软开关技术发展到双零软开关技术,各个技术之间存在相辅相成的纽带关系, 同时具有各自的应用威廉希尔官方网站 要求特点,因而,对开关器件的IGBT的要求各不相同。而IGBT正确选择与使用尤为重要。
1 IGBT额定电压的选择
三相380V输入电压经过整流和滤波后,直流母线电压的最大值:
在开关工作的条件下,fGBT的额定电压一般要求高于直流母线电压的两倍,根据IGBT规格的电压等级,选择1 200V电压等级的IGBT。
2 IGBT额定电流的选择
以30kW变频器为例,负载电流约为79A,由于负载电气启动或加速时,电流过载,一般要求1分钟的时间内,承受1.5倍的过流,择最大负载电流约为119A ,建议选择150A电流等级的IGBT。
3 IGBT开关参数的选择
变频器的开关频率一般小于10 kH Z,而在实际工作的过程中,fGBT的通态损耗所占比重比较大,建议选择低通态型IGBT,以30 kW ,逆变频率小于10kH z的变频器为例,选择IGBT的开关参数见表1。
4 影响IGBT可靠性因素
1)栅电压。
IGBT工作时,必须有正向栅电压,常用的栅驱动电压值为15~187,最高用到20V, 而棚电压与栅极电阻Rg有很大关系,在设计IGBT驱动威廉希尔官方网站 时, 参考IGBT Datasheet中的额定Rg值,设计合适驱动参数,保证合理正向栅电压。因为IGBT的工作状态与正向棚电压有很大关系,正向栅电压越高,开通损耗越小,正向压降也咯小。
在桥式威廉希尔官方网站 和大功率应用情况下,为了避免干扰,在IGBT关断时,栅极加负电压,一般在-5- 15V,保证IGBT的关断,避免Miller效应影响。
2)Miller效应。
为了降低Miller效应的影响,在IGBT栅驱动威廉希尔官方网站
中采用改进措施:(1)开通和关断采用不同栅电阻Rg,on和Rg,off,确保IGBT的有效开通和关断;(2)栅源间加电容c,对Miller效应产生的电压进行能量泄放;(3)关断时加负栅压。在实际设计中,采用三者合理组合,对改进Mille r效应的效果更佳。
结论
(1)IGBT是逆变器主要使用的主要功率开关器件,也是逆变器中主要工作器件,合理选择IGBT是保证IGBT可靠工作的前提,同时,要根据三相逆变威廉希尔官方网站
结构的特点,选择低通态型IGBT为佳。
主要参数如下
Vce
ICM
ILM
IC @ TC = 25°C
IC @ TC = 100°C
IF @ TC = 25°C
IF @ TC = 100°C
IFM(Diode Max Forward Current)
VGE
以上参数主要决定了所选择管子的规格。其中耐压、耐流和耐最大冲击电流能力都需要特别关注,特别是电源中有开机的inrush current一般会很大,需要较大的ICM.驱动电压多少我不用多说了,一定温度下电流通流能力是做一个很重要的参数,直接关系到你做halt试验结果。
PD @ TC = 25°C
PD @ TC = 100°C
Rθjc( IGBT)
Rθjc(Diode)
Rθcs(Case-to-Sink.。.)
Rθja(Junction-to-Ambient.。.)
以上直接决定拟所选择管子的热设计,知道以上参数可以推算出junction的温度,也就是温度最高点的温度
VCE(on)
VFM
Diode Forward Voltage Drop
Eon
Eoff
Etot
Eon
Eoff
Etot
Td(on)
Tr
Td(off)
Tf
Trr
Irr
以上参数直接关系到你计算管子的损耗计算,是前期研发的重要参数,直接关系到你估计的损耗,接合热阻等概念,直接可以大概估计你所选择管子的热设计如何选择。
最后当然还有个重要的参数就是价格了。
以上我列出了的igbt 和mosfet的项目中带有体内二极管,如果没有体内二极管的管子,你当然应知道该如何处理
(2)根据IGBT的棚特性。合理设计栅驱动结构, 保证IGBT有效的开通和关断, 降低Miller效应的影响。
全部0条评论
快来发表一下你的评论吧 !