OFDMA是OFDM技术的演进,将OFDM和FDMA技术结合。在利用OFDM对信道进行子载波化后,在部分子载波上加载传输数据的传输技术。OFDMA又分为子信道(Subchannel)OFDMA和跳频OFDMA。
OFDMA基本原理
多径效应是目前无线系统面临的挑战之一。多径来自发射器和接收器间的反射,反射在不同时刻到达接收器。分离各反射的时间间隔被称为延迟扩展。当延迟扩展与发送的符号时间(Symbol Time)大致相等时,这种干扰有可能引发问题。典型的延迟扩展时长几微秒,与CDMA符号时间接近。OFDMA的符号时间大致在100微秒,因而多径现象的影响不太严重。为缓解多径效应,在每一符号后插入一个约10微秒、称为循环前缀的警戒边带。
为得到更高数据速率,OFDM系统必须比CDMA系统更有效地利用频宽。每单位赫兹的位数称为频谱效率。采用高阶调制是实现更高效率的方法之一。阶数是指每一子载波发送的位数。例如,在正交振幅调制(QAM)中,每载频发送2位。在16 QAM和64 QAM中,每个子载波分别发送4和6位。在4G系统,因预期会采用64 QAM,所以其频谱效率很高。OFDMA针对多用户通信进行了优化,尤其是蜂窝电话和其它移动设备。
它是针对蜂窝电话长期演进(LTE)的最合适调制方案。在这种演变的过程中, OFDMA的名称变为高速正交频分复用分组接入(HSOPA)。OFDMA的变量由WiMAXwilliam hill官网 选为调制方案,后来又根据IEEE针对IEEE 802.16-2004(固话)和802.12e(移动)WiMAX的标准进行了标准化。
与CDMA(码分多址接入)宽带CDMA及通用移动通信系统(UMTS)这类3G调制方案相比,它的好处在于具有更高的频谱效率和更好的抗衰落性能。对于低数据率用户,它只需要更低的发射功耗,具有恒定而不是随时间变化的更短延迟,以及避免冲突的更简洁方法。
OFDMA会把副载波的子集分配给各个用户。以关于信道状态的反馈为基础,系统能执行自适应用户到副载波的分配。只要这些副载波分配被迅速地执行,与OFDM相比,快速衰退、窄带同频干扰性能都得到了改进。反过来,这又改进了系统的频谱效率。
OFDMA将整个频带分割成许多子载波,将频率选择性衰落信道转化为若干平坦衰落子信道,从而能够有效地抵抗无线移动环境中的频率选择性衰落。由于子载波重叠占用频谱,OFDM能够提供较高的频谱利用率和较高的信息传输速率。通过给不同的用户分配不同的子载波,OFDMA提供了天然的多址方式,并且由于占用不同的子载波,用户间满足相互正交,没有小区内干扰(如图1所示)。同时,OFDMA可支持两种子载波分配模式:分布式和集中式。在子载波分布式分配的模式中,可以利用不同子载波的频率选择性衰落的独立性而获得分集增益。
此外,因为OFDMA已成为下行链路的主流方案,上行链路如也采用OFDMA,LTE的上下行链路将具有最大的一致性,可以简化终端的设计。
一个分配了M个子载波的用户的传输信号可表示为:D =[d 0,d 1……d M-1]T,其中,T代表矩阵转置,di是调制信号。
经过快速傅立叶反变换(IFFT)调制后,信号向量S =F N* T N,M D,其中TN,M代表子载波分配的映射矩阵,其元素是表达子载波的分布式或者集中式分配。F*N是N点IFFT矩阵,*代表共轭转置,并且FN=[f 1T,f 2T……f NT]T
经过衰落信道和快速傅立叶变换(FFT)信号处理后,频域的接收信号可以作如下表达:R=HTN,M D+n,其中H=diag(Hk),Hk是第k个子载波上的频域响应;n是高斯噪声向量;R=[r(0),r ⑴ ……r (N-1)]T,r (k)是第k个子载波上的接收信号。
由于OFDM的时域信号是若干平行随机信号之和,因而容易导致高PAPR。基站端的功率限制相对较弱,并且可以采用较为昂贵的功率放大器,所以在下行链路中,高PAPR不会带来太大的问题。然而,在上行链路中,由于用户终端的功率放大器要求低成本,并且电池的容量有限,因而高PAPR会将降低UE的功率利用率,减小上行的有效覆盖。为避免OFDM的上述缺点,必须降低PAPR。
降低OFDM的PAPR的技术有很多,比如选择性映射、削波和滤波等等。文献[6]中证明了通过削波和滤波,可以将PAPR降低到6 dB以下时,同时对OFDM的性能影响很小,而且带来的复杂度增加也是可以接受的。因此,本文将主要研究不同多址方案的链路级性能的比较。在OFDM中,采用快速傅立叶变换(FFT)将可用带宽分成数学上正交的许多小带宽。而频带的重构是由快速傅立叶反变换(IFFT)完成的。FFT和IFFT都是定义得很完善的算法,当大小为2的整数倍时,可被非常高效地实现。OFDM系统的典型FFT大小是512、1024和2048,而较小的 128和256也是可能的。可支持5、10和20 MHz带宽。该技术的一个优异特性是易于改用其它带宽。即便整个可用带宽改变了,较小的带宽单元也可维持不变。例如:10MHz可分成1,024个小频带;而5MHz可分成512个小频带。这些典型大小为10 kHz的小频带被称为子载波。
评论
查看更多