Xilinx可编程逻辑器件设计与开发(基础篇)连载50:Spartan

FPGA/ASIC技术

206人已加入

描述

12.7 PicoBlaze 设计实例

一、 设计要求

1. PICOBLAZE 嵌入式系统,包括1 个8 位的方波输出口,一个驱动两位7 段LED 的输出口,一个时钟输入和一个中断输入。
2. 在Spartan-3an starter 套件中实现。

二、 设计过程

1. 在ISE 11.x中建立一个新的项目,项目名为kcpsm3_int_test,并加入源文件kcpsm3.vhd,这仅仅是一个PicoBlaze控制器核文件,读者可以根据自己的爱好选择不同的设计语言。

2. 编写PicoBlaze的汇编语言源程序,本例中的汇编源程序为int_test.psm,具体如下。

;Interrupt example
;
CONSTANT waveform_port, 02 ;定义方波输出端口ID为02
CONSTANT counter_port, 04 ;定义中断计数器输出端口ID为04
CONSTANT sel_port, 08 ;定义2位7段LED选择输出端口ID为08
CONSTANT pattern_10101010, AA ;定义方波输出口初始值
CONSTANT ini_sel, 01 ;定义2位7段LED位选初始值为01
NAMEREG sA, interrupt_counter ;将sA寄存重新命名为interrupt_counter
;
start: LOAD interrupt_counter, 00 ;中断计数寄存器清零
LOAD s2, pattern_10101010 ;将方波数据载入寄存器s2中
LOAD sD, ini_sel ;将位选值装载入寄存器sD中
ENABLE INTERRUPT ;使能中断
;
drive_wave: OUTPUT s2, waveform_port ;输出方波
OUTPUT sD, sel_port ;输出LED位选
LOAD s0, FF ;延时
loop3: LOAD s1, FF
loop4: SUB s1, 01
ADD s1, 01
SUB s1, 01
JUMP NZ, loop4
SUB s0, 01
JUMP NZ, loop3
XOR s2, FF ;方波值取反
XOR sD, FF ;位选值取反
JUMP drive_wave
;
ADDRESS 2B0 ;定义程序存储地址
int_routine: ADD interrupt_counter, 01 ;中断计数器加1
OUTPUT interrupt_counter, counter_port ;输出计数值
OUTPUT sD, sel_port ;输出位选
LOAD sF, FF ;延时
loop1: LOAD sE, FF
loop2: SUB sE, 01
ADD sE, 01
SUB sE, 01
JUMP NZ, loop2
SUB sF, 01
JUMP NZ, loop1
XOR sD, FF
RETURNI ENABLE ;中断返回
;
ADDRESS 3FF ;中断入口地址
JUMP int_routine
3. 将int_test.psm 文件拷贝到Assembler 目录下, 运行DOS 命令, 进入
Assembler 目录,运行如下命令:
kcpsm3 int_test.psm > screen 回车

编译后Assembler 目录中产生了一些新的文件, 如图12-30 所示。其中INT_TEST.VHD/INT_TEST.V 文件为我们需要的文件,它就是PicoBlaze 的程序存储器文件,将它加入到kcpsm3_int_test 项目中。可以看到,生成的PROM 文件名与汇编源程序的文件名相同。

Xilinx

图12-30 编译后Assembler 目录文件

其中screen 文件为一个文本文件,编译过程记录在此文件中,如果源文件有错误,错误信息会在此文件中找到。

4. 建立一个顶层文件。在顶层文件中完成PROM 文件以及PicoBlaze 核文件的连接。下面对顶层文件进行简要说明。
例化kcpsm3 和INT_TEST。
初始化未用的PicoBlaze 输入引脚in_port 和reset。
扩展输出寄存器, 分别是waveforms 、counter 和sel,其端口ID 分别为0x02、0x04 和0x08。
中断输入逻辑。
将计数器的结果译码为7 段LED 的输入编码。

顶层文件源代码如下。
--
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

--
-------------------------------------------------------------------------
entity kcpsm3_int_test is
Port ( LED : out std_logic_vector(6 downto 0);
waveforms : out std_logic_vector(7 downto 0);
interrupt_event : in std_logic;
clk : in std_logic;
selp : out std_logic);
end kcpsm3_int_test;
-------------------------------------------------------------------------
architecture Behavioral of kcpsm3_int_test is
--
component kcpsm3
Port ( address : out std_logic_vector(9 downto 0);
instruction : in std_logic_vector(17 downto 0);
port_id : out std_logic_vector(7 downto 0);
write_strobe : out std_logic;
out_port : out std_logic_vector(7 downto 0);
read_strobe : out std_logic;
in_port : in std_logic_vector(7 downto 0);
interrupt : in std_logic;
interrupt_ack : out std_logic;
reset : in std_logic;
clk : in std_logic);
end component;
--
component int_test
Port ( address : in std_logic_vector(9 downto 0);
instruction : out std_logic_vector(17 downto 0);
clk : in std_logic);
end component;
--
-------------------------------------------------------------------------
signal address : std_logic_vector(9 downto 0);
signal instruction : std_logic_vector(17 downto 0);
signal port_id : std_logic_vector(7 downto 0);
signal out_port : std_logic_vector(7 downto 0);
signal in_port : std_logic_vector(7 downto 0);
signal write_strobe : std_logic;

signal read_strobe : std_logic;
signal interrupt : std_logic :='0';
signal interrupt_ack : std_logic;
signal reset : std_logic;
signal counter : std_logic_vector(7 downto 0);
signal HEX0 : std_logic_vector(3 downto 0);
signal HEX1 : std_logic_vector(3 downto 0);
signal HEX : std_logic_vector(3 downto 0);
signal sel : std_logic;
--
-------------------------------------------------------------------------
begin
processor: kcpsm3
port map( address => address,
instruction => instruction,
port_id => port_id,
write_strobe => write_strobe,
out_port => out_port,
read_strobe => read_strobe,
in_port => in_port,
interrupt => interrupt,
interrupt_ack => interrupt_ack,
reset => reset,
clk => clk);
program: int_test
port map( address => address,
instruction => instruction,
clk => clk);
-- Unused inputs on processor
in_port <= "00000000";
reset <= '0';
-- Adding the output registers to the processor
IO_registers: process(clk)
begin

if clk'event and clk='1' then
-- waveform register at address 02
if port_id(1)='1' and write_strobe='1' then
waveforms <= out_port;
end if;
-- Interrupt Counter register at address 04
if port_id(2)='1' and write_strobe='1' then
counter <= out_port;
end if;
-- sel port register at address 08
if port_id(3) = '1' and write_strobe = '1' then
sel <= out_port(0);
end if;
end if;
end process IO_registers;
-- Adding the interrupt input
-- Note that the initial value of interrupt (low) is
-- defined at signal declaration.
interrupt_control: process(clk)
begin
if clk'event and clk='1' then
if interrupt_ack='1' then
interrupt <= '0';
elsif interrupt_event='1' then
interrupt <= '1';
else
interrupt <= interrupt;
end if;
end if;
end process interrupt_control;
HEX0 <= counter(3 downto 0);
HEX1 <= counter(7 downto 4);
with HEX SELect

LED <= "0000110" when "0001", --1
"1011011" when "0010", --2
"1001111" when "0011", --3
"1100110" when "0100", --4
"1101101" when "0101", --5
"1111101" when "0110", --6
"0000111" when "0111", --7
"1111111" when "1000", --8
"1101111" when "1001", --9
"1110111" when "1010", --A
"1111100" when "1011", --b
"0111001" when "1100", --C
"1011110" when "1101", --d
"1111001" when "1110", --E
"1110001" when "1111", --F
"0111111" when others; --0
HEX <= HEX0 when sel = '0' else HEX1;
selp <= sel;
end Behavioral;
添加约束文件,约束文件内容如下。
NET "clk" LOC = "E12"|IOSTANDARD = LVCMOS33 ;
NET "selp" LOC = "AB19"|IOSTANDARD = LVCMOS33|SLEW = SLOW|DRIVE = 8;
NET "LED<6>" LOC = "AA19"|IOSTANDARD = LVCMOS33|SLEW = SLOW|DRIVE = 8;
NET "LED<5>" LOC = "AB21"|IOSTANDARD = LVCMOS33|SLEW = SLOW|DRIVE = 8;
NET "LED<4>" LOC = "AA21"|IOSTANDARD = LVCMOS33|SLEW = SLOW|DRIVE = 8;
NET "LED<3>" LOC = "V16"|IOSTANDARD = LVCMOS33|SLEW = SLOW|DRIVE = 8;
NET "LED<2>" LOC = "W16"|IOSTANDARD = LVCMOS33|SLEW = SLOW|DRIVE = 8;
NET "LED<1>" LOC = "V15"|IOSTANDARD = LVCMOS33|SLEW = SLOW|DRIVE = 8;
NET "LED<0>" LOC = "V14"|IOSTANDARD = LVCMOS33|SLEW = SLOW|DRIVE = 8;
NET "waveforms<0>" LOC ="R20"|IOSTANDARD=LVCMOS33|SLEW = SLOW|DRIVE = 8;
NET "waveforms<1>" LOC ="T19"|IOSTANDARD=LVCMOS33|SLEW = SLOW|DRIVE = 8;
NET "waveforms<2>" LOC ="U20"|IOSTANDARD=LVCMOS33|SLEW = SLOW|DRIVE = 8;
NET "waveforms<3>" LOC ="U19"|IOSTANDARD=LVCMOS33|SLEW = SLOW|DRIVE = 8;
NET "waveforms<4>" LOC ="V19"|IOSTANDARD=LVCMOS33|SLEW = SLOW|DRIVE = 8;
NET "waveforms<5>" LOC ="V20"|IOSTANDARD=LVCMOS33|SLEW = SLOW|DRIVE = 8;
NET "waveforms<6>" LOC ="Y22"|IOSTANDARD=LVCMOS33|SLEW = SLOW|DRIVE = 8;

NET "waveforms<7>" LOC ="W21"|IOSTANDARD=LVCMOS33|SLEW = SLOW|DRIVE = 8;
#PACE: Start of PACE Area Constraints
NET "interrupt_event" LOC = "T9"|IOSTANDARD = LVCMOS33|PULLUP ;

5. 综合、布局布线。如图12-31所示,在ISE中完成布局布线。

 

Xilinx

图12-31 综合、布局布线

6. 配置FPGA。用iMPACT配置FPGA。

7. 读者可以在/CH12/kcpsm3_int_test中找到ISE工程文件,在/CH12/assembler中找到int_test.psm源文件。

12.8 小结

本章介绍了PicoBlaze微控制器,包括其基本结构、指令系统和开发工具,最后用一个简单的实例介绍了PicoBlaze的开发流程。PicoBlaze具有精小、易用、灵活、高性能等优点,不会像很多MCU一样停产,影响产品生命周期,可以方便地应用在Xilinx的FPGA中,特别适合应用于小型的控制系统中,用来实现状态机控制,进行系统管理。
目前,FPGA已经广泛地应用在游戏机产品、小型电机控制和医疗产品中,希望通过本章介绍,使其应用更加广泛。

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分