标记分布学习是在以标记分布标注的示例上学习的新型学习范式,近年来已成功应用于面部年龄估计、头部姿势估计和情感识别等实际场景中。在标记分布学习中,需要足够多的标记分布数据才能训练岀预测性能好的模型。然而,标记分布学习有时会面临标记数据不足和注释成本太高的困境。基于边际概率分布匹配的主动标记分布学习( Active Label distributionLearning Based on Marginal Probability Distribution Matching, ALDL-MMD)算法是针对标记分布学习注释成本过高的问题而设计的,以减少训练模型所需的标注数据量,从而降低注释成本。ALDL-Mw算法训练了一个线性回归模型,在保证其训练误差最小的同时,学习一个反映未标记数据上选点需求的稀疏向量,使选点后的训练集和未标记集的数据分布尽量相似,并对这个向量做松弛化处理,以简计算。在多个标记分布数据集上的实验结果表明,在“ Canberra metric”和¨ Intersection”这两个衡量标记分布的指标上, ALDL-MMD算法优于已有的主动示例选择方法,体现了其在降低注释成本方面的有效性。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !