标记分布是一种新的机器学习范式,能很妤地解决某些标记多义性问题,可看作多标记的泛化。传统的单标记学习和多标记学习均可看作标记分布学习的特例。已有的标记分布学习算法中,基于算法改造的 AA-KNN( Algorithm AdaptationKNN)是一种高效的算法,但任何涉及K近邻求解问题的算法在处理不同数据集时,参数K值的选取都是一个难题,不同的K值得到的结果明显不同。基于此,将自然最近邻居的概念引入标记分布学习,提出一种新的标记分布学习方法。对数据集使用自然最近邻居搜索算法查找每个样本的自然邻居,取自然邻居的标记分布均值作为预测结釆。搜索算法不需要人工设置任何参数,同时搜索算法是一种被动搜索,其自适应计算得到每个样本的邻居。在6个数据集上使用6个评价指标进行实验,结果表明,与 AA-KNN相比,结合自然最近邻居的标记分布学习算法不仅避免了人工设置参数的问题,而且取得了更优的效果。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !