利用遗传算法生成复杂软件的测试数据,是软件测试领域一个全新的研究方向.传统的基于遗传算法的测试数据生成技术,需要以每个测试数据作为输入运行被测程序,以获得个体的适应值,因此,需要消耗大量的运行时间.为了降低运行程序带来的时间消耗,提出一种基于神经网络的路径覆盖测试数据进化生成方法,主要思想是:首先,利用一定样本训练神经网络,以模拟个体的适应值;在利用遗传算法生成测试数据时,先利用训练好的神经网络粗略计算个体适应值:对适应值较好的优秀个体。再通过运行程序,获得精确的适应值.最后的实验结果表明,该方法可以有效降低运行程序产生的时间消耗,从而提高测试数据生成的效率.
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !