资料介绍
Table of Contents
ADXL362 - No-OS Driver for Microchip Microcontroller Platforms
Supported Devices
Evaluation Boards
Overview
The ADXL362 is an ultralow power, 3-axis MEMS accelerometer that consumes less than 2 μA at a 100 Hz output data rate and 270 nA when in motion triggered wake-up mode. Unlike accelerometers that use power duty cycling to achieve low power consumption, the ADXL362 does not alias input signals by undersampling; it samples the full bandwidth of the sensor at all data rates.
The ADXL362 always provides 12-bit output resolution; 8-bit formatted data is also provided for more efficient single-byte transfers when a lower resolution is sufficient. Measurement ranges of ±2 g, ±4 g, and ±8 g are available, with a resolution of 1 mg/LSB on the ±2 g range. For applications where a noise level lower than the normal 550 μg/√Hz of the ADXL362 is desired, either of two lower noise modes (down to 175 μg/√Hz typical) can be selected at minimal increase in supply current.
In addition to its ultralow power consumption, the ADXL362 has many features to enable true system level power reduction. It includes a deep multimode output FIFO, a built-in micropower temperature sensor, and several activity detection modes including adjustable threshold sleep and wake-up operation that can run as low as 270 nA at a 6 Hz (approximate) measurement rate. A pin output is provided to directly control an external switch when activity is detected, if desired. In addition, the ADXL362 has provisions for external control of sampling time and/or an external clock.
The ADXL362 operates on a wide 1.6 V to 3.5 V supply range, and can interface, if necessary, to a host operating on a separate, lower supply voltage. ADXL362 is available in a 3 mm × 3.25 mm × 1.06 mm package.
Applications
The goal of this project (Microcontroller No-OS) is to be able to provide reference projects for lower end processors, which can't run Linux, or aren't running a specific operating system, to help those customers using microcontrollers with ADI parts. Here you can find a generic driver which can be used as a base for any microcontroller platform and also specific drivers for different microcontroller platforms.
Driver Description
The driver contains two parts:
- The driver for the ADXL362 part, which may be used, without modifications, with any microcontroller.
- The Communication Driver, where the specific communication functions for the desired type of processor and communication protocol have to be implemented. This driver implements the communication with the device and hides the actual details of the communication protocol to the ADI driver.
The Communication Driver has a standard interface, so the ADXL362 driver can be used exactly as it is provided.
There are three functions which are called by the ADXL362 driver:
- SPI_Init() – initializes the communication peripheral.
- SPI_Write() – writes data to the device.
- SPI_Read() – reads data from the device.
SPI driver architecture
The following functions are implemented in this version of ADXL362 driver:
Function | Description |
---|---|
char ADXL362_Init(void) | Initializes the device. |
void ADXL362_SetRegisterValue(unsigned short registerValue, unsigned char registerAddress, unsigned char bytesNumber) | Writes data into a register. |
void ADXL362_GetRegisterValue(unsigned char *pReadData, unsigned char registerAddress, unsigned char bytesNumber) | Performs a burst read of a specified number of registers. |
void ADXL362_GetFifoValue(unsigned char *pBuffer, unsigned short bytesNumber) | Reads multiple bytes from the device's FIFO buffer. |
void ADXL362_SoftwareReset(void) | Resets the device via SPI communication bus. |
void ADXL362_SetPowerMode(unsigned char pwrMode) | Places the device into standby/measure mode. |
void ADXL362_SetRange(unsigned char gRange) | Selects the measurement range. |
void ADXL362_SetOutputRate(unsigned char outRate) | Selects the Output Data Rate of the device. |
void ADXL362_GetXyz(short *x, short *y, short *z) | Reads the 3-axis raw data from the accelerometer. |
void ADXL362_GetGxyz(float* x, float* y, float* z) | Reads the 3-axis raw data from the accelerometer and converts it to g. |
float ADXL362_ReadTemperature(void) | Reads the temperature of the device. |
void ADXL362_FifoSetup(unsigned char mode, unsigned short waterMarkLvl, unsigned char enTempRead) | Configures the FIFO feature. |
void ADXL362_SetupActivityDetection(unsigned char refOrAbs, unsigned short threshold, unsigned char time) | Configures activity detection. |
void ADXL362_SetupInactivityDetection(unsigned char refOrAbs, unsigned short threshold, unsigned short time) | Configures inactivity detection. |
HW Platform(s):
Downloads
- PmodACL2 Demo for PIC32MX320F128H: https://github.com/analogdevicesinc/no-OS/tree/master/Microchip/PIC32MX320F128H/PmodACL2
- PIC32MX320F128H Common Drivers: https://github.com/analogdevicesinc/no-OS/tree/master/Microchip/PIC32MX320F128H/Common
Digilent Cerebot MX3cK Quick Start Guide
This section contains a description of the steps required to run the ADXL362 demonstration project on a Digilent Cerebot MX3cK platform.
Required Hardware
Required Software
- The ADXL362 demonstration project for PIC32MX320F128H.
The ADXL362 demonstration project for PIC32MX320F128H consists of three parts: the ADXL362 Driver, the PmodACL2 Demo for PIC32MX320F128H and the PIC32MX320F128H Common Drivers.
All three parts have to be downloaded.
Hardware Setup
Reference Project Overview
The following commands were implemented in this version of ADXL362 reference project for Cerebot MX3cK board.
Command | Description |
---|---|
help? | Displays all available commands. |
id? | Displays device details. |
measure= | Start/stop the measurement process of the device. Accepted values: 0 - Stop measurement. 1 - Start measurement. |
temperature? | Displays the temperature. |
reset! | Resets the device. |
acceleration? | Displays the accelerations on XYZ axes. |
accelerationX? | Displays the acceleration on X axis. |
accelerationY? | Displays the acceleration on Y axis. |
accelerationZ? | Displays the acceleration on Z axis. |
activity? | Displays the activity status of the device. It runs for 5 motion detections. |
Commands can be executed using a serial terminal connected to the UART1 peripheral of PIC32MX320F128H.
The following image shows a generic list of commands in a serial terminal connected to processor’s UART peripheral.
Software Project Setup
This section presents the steps for developing a software application that will run on the Digilent Cerebot MX3cK development board for controlling and monitoring the operation of the ADI part.
- Run the MPLAB X integrated development environment.
- Choose to create a new project.
- In the Choose Project window select Microchip Embedded category, Standalone Project and press Next.
- In the Select Device window choose PIC32MX320F128H device and press Next.
- In the Select Tool window select the desired hardware tool and press Next.
- In the Select Compiler window chose the XC32 compiler and press Next.
- In the Select Project Name and Folder window choose a name and a location for the project.
- After the project is created, all the downloaded source files have to be copied in the project folder and included in the project.
- The project is ready to be built and downloaded on the development board.
Digilent Cerebot MC7 Quick Start Guide
This section contains a description of the steps required to run the ADXL362 demonstration project on a Digilent Cerebot MC7 platform.
Required Hardware
- PmodACL2
Required Software
Hardware Setup
Reference Project Overview
Following commands were implemented in this version of ADXL362 reference project for Cerebot MC7 board.
Command | Description |
---|---|
help? | Displays all available commands. |
id? | Device details. |
measure= | Start/stop the measure process of the device. Accepted values: 0 - 1. |
temp? | Read the temperature. |
reset= | Reset the device. |
acceleration? | Displays the accelerations on XYZ axis. |
activity? | Displays the activity status of the device. It runs for 5 motion detections. |
Commands can be executed using a serial terminal connected to the UART1 peripheral of dsPIC33FJ128MC706A.
The following image shows a list of commands in a serial terminal connected to processor’s UART peripheral.
Software Project Setup
This section presents the steps for developing a software application that will run on the Digilent Cerebot MC7 development board for controlling and monitoring the operation of the ADI part.
- Run the MPLAB X integrated development environment.
- Choose to create a new project.
- In the Choose Project window select Microchip Embedded category, Standalone Project and press Next.
- In the Select Device window choose dsPIC33FJ128MC706A device and press Next.
- In the Select Tool window select the desired hardware tool and press Next.
- In the Select Compiler window chose the XC16 compiler and press Next.
- In the Select Project Name and Folder window choose a name and a location for the project.
- After the project is created, the source files have to be copied in the project folder and included in the project.
- The project is ready to be built and downloaded on the development board.
Digilent Cerebot MX3cK Quick Start Guide - chipKIT Project
This section contains a description of the steps required to run the ADXL362 chipKIT demonstration project on a Digilent Cerebot MX3cK platform.
Required Hardware
- PmodACL2
Required Software
Hardware Setup
Reference Project Overview
Following commands were implemented in this version of ADXL362 chipKIT reference project for Cerebot MX3cK board.
Command | Description |
---|---|
help? | Displays all available commands. |
id? | Device details. |
measure= | Start/stop the measure process of the device. Accepted values: 0 - 1. |
temp? | Read the temperature. |
reset= | Reset the device. |
acceleration? | Displays the accelerations on XYZ axis. |
activity? | Displays the activity status of the device. It runs for 5 motion detections. |
Commands can be executed using the serial monitor.
Carriage return has to be selected as a line ending character. The required baud rate is 9600 baud.
The following image shows a list of commands in the serial monitor.
Software Project Setup
This section presents the steps for developing a chipKIT application that will run on the Digilent Cerebot MX3cK development board for controlling and monitoring the operation of the ADI part.
- Under your Sketchbook directory create a folder called “Libraries”; this folder may already exist.
- Unzip the downloaded file in the libraries folder.
- Run the MPIDE environment.
- You should see the new library under Sketch→Import Library, under Contributed.
- Also you should see under File→Examples the demo project for the ADI library.
- Select the ADIDriver example.
- Select the Cerebot MX3cK board from Tools→Board.
- Select the corresponding Serial Communication Port from Tools→Serial Port
- The project is ready to be uploaded on the development board.
More information
- Example questions:
- An error occurred while fetching this feed: http://ez.analog.com/community/feeds/allcontent/atom?community=2077
- AD5160-适用于瑞萨微控制器平台的无操作系统驱动程序
- AD7156-适用于单片机平台的无操作系统驱动程序
- AD5160-适用于微芯片微控制器平台的无操作系统驱动程序
- AD5628-适用于微芯片微控制器平台的无操作系统驱动程序
- AD7303-适用于单片机平台的无操作系统驱动程序
- AD7091R-适用于单片机平台的无操作系统驱动程序
- AD5541A-适用于瑞萨微控制器平台的无操作系统驱动程序
- AD7193-适用于单片机平台的无操作系统驱动程序
- ADXL345-适用于单片机平台的无操作系统驱动程序
- AD7780-适用于单片机平台的无操作系统驱动程序
- AD5781-适用于瑞萨微控制器平台的无操作系统驱动程序
- ADT7420-适用于单片机平台的无操作系统驱动程序
- ADP5589-适用于单片机平台的无操作系统驱动程序
- ADXL362-用于瑞萨微控制器平台的无操作系统驱动程序
- ADXRS453-适用于单片机平台的无操作系统驱动程序
- 国产RT-thread操作系统在国民技术单片机上移植 395次阅读
- 了解和使用无操作系统和平台驱动程序 1066次阅读
- 51单片机操作系统开发中有什么技巧会碰到什么问题 2898次阅读
- 单片机多任务处理方案 9318次阅读
- 51单片机实时操作系统的基本结构与模式 5401次阅读
- 单片机和嵌入式系统linux的区别 6890次阅读
- 适用于测控领域的4种实时操作系统对比分析 3531次阅读
- 浅谈电脑驱动程序的工作原理 详解电脑驱动程序意义 2.9w次阅读
- 基于嵌入式Linux内核的系统设备驱动程序开发设计 1113次阅读
- 单片机与嵌入式系统有什么区别和联系? 1.4w次阅读
- 一文看懂单片机与PLC程序设计的区别 7334次阅读
- Windows应用程序,操作系统,计算机硬件之间的相互关系 1.2w次阅读
- 51单片机DS1302实时时钟驱动程序 9255次阅读
- 基于K9F5608A的MCS-51单片机驱动程序 1966次阅读
- 基于ADC081S051与51单片机的接口威廉希尔官方网站 及驱动程序 4378次阅读
下载排行
本周
- 1电子威廉希尔官方网站 原理第七版PDF电子教材免费下载
- 0.00 MB | 1491次下载 | 免费
- 2单片机典型实例介绍
- 18.19 MB | 95次下载 | 1 积分
- 3S7-200PLC编程实例详细资料
- 1.17 MB | 27次下载 | 1 积分
- 4笔记本电脑主板的元件识别和讲解说明
- 4.28 MB | 18次下载 | 4 积分
- 5开关电源原理及各功能威廉希尔官方网站 详解
- 0.38 MB | 11次下载 | 免费
- 6100W短波放大威廉希尔官方网站 图
- 0.05 MB | 4次下载 | 3 积分
- 7基于单片机和 SG3525的程控开关电源设计
- 0.23 MB | 4次下载 | 免费
- 8基于AT89C2051/4051单片机编程器的实验
- 0.11 MB | 4次下载 | 免费
本月
- 1OrCAD10.5下载OrCAD10.5中文版软件
- 0.00 MB | 234313次下载 | 免费
- 2PADS 9.0 2009最新版 -下载
- 0.00 MB | 66304次下载 | 免费
- 3protel99下载protel99软件下载(中文版)
- 0.00 MB | 51209次下载 | 免费
- 4LabView 8.0 专业版下载 (3CD完整版)
- 0.00 MB | 51043次下载 | 免费
- 5555集成威廉希尔官方网站 应用800例(新编版)
- 0.00 MB | 33562次下载 | 免费
- 6接口威廉希尔官方网站 图大全
- 未知 | 30320次下载 | 免费
- 7Multisim 10下载Multisim 10 中文版
- 0.00 MB | 28588次下载 | 免费
- 8开关电源设计实例指南
- 未知 | 21539次下载 | 免费
总榜
- 1matlab软件下载入口
- 未知 | 935053次下载 | 免费
- 2protel99se软件下载(可英文版转中文版)
- 78.1 MB | 537793次下载 | 免费
- 3MATLAB 7.1 下载 (含软件介绍)
- 未知 | 420026次下载 | 免费
- 4OrCAD10.5下载OrCAD10.5中文版软件
- 0.00 MB | 234313次下载 | 免费
- 5Altium DXP2002下载入口
- 未知 | 233046次下载 | 免费
- 6威廉希尔官方网站 仿真软件multisim 10.0免费下载
- 340992 | 191183次下载 | 免费
- 7十天学会AVR单片机与C语言视频教程 下载
- 158M | 183277次下载 | 免费
- 8proe5.0野火版下载(中文版免费下载)
- 未知 | 138039次下载 | 免费
评论
查看更多