传统的软子空间聚类算法在对信息量大、强度不均匀、边界模糊的乳腺MR图像进行分割时,易受初始聚类中心和噪声数据的影响,导致算法陷入局部最优,造成误分类。针对该问题,提出一种头脑风暴算法优化的乳腺MR图像软子空间聚类算法。算法首先引入一个放松界约束与广义噪声聚类结合的目标函数,并用隶属度计算方法来寻找簇类所在子空间;然后在子空间聚类时用给定指数来适配聚类任务;最后在聚类过程中运用头脑风暴算法进行优化,有效地平衡局部搜索与全局搜索,从而弥补现有算法易陷入局部最优的不足对比算法与该算法在 Berkeley图像数据集上的实验结果表明该算法具有较髙的精度,临床乳腺MR图像聚类的实验结果验证了所提算法的鲁棒性。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !