PTN 时间同步方案在移动网络中的应用

网络协议

14人已加入

描述

PTN 时间同步方案在移动网络中的应用

移动技术从 2G 向3G、到LTE 发展推动着移动传送网络从传统的TDM 技术向着更高带宽、更低成本、更加灵活的分组技术演进。PTN(Packettransportnetwork)作为一种面向连接的传送技术,基于分组架构,借鉴了SDH 完善的保护倒换、丰富的OAM、良好的同步性能,同时融合了MPLS/Ethernet 技术分组交换、QoS管理以及统计复用等思想,为运营商建设可管理、可运维的统一融合的传送网提供了一个良好解决思路。
PTN 满足移动网络同步要求的战略意义
移动网络对高精度同步有严格的要求,基站工作的切换、漫游等都需要精确的时间控制,避免用户在基站之间切换过程中出现掉线、影响其它用户的现象,目前各种无线技术对同步的要求如表所示。

网络

目前已经部署的 TD-SCDMA(以下简称TD)网络,均采用GPS 方案来解决移动网络同步问题。但GPS 天线安装需要满足120°的净空要求,工程安装有难度,且GPS 成本较高,维护困难。中国移动一直积极寻求替代GPS 的新技术,一方面通过有线传输网络传送精确时间同步信号;另一方面利用我国自主发射的北斗卫星作为时间信号源,使用北斗卫星与GPS 卫星双模授时,并互为主备用。最终从时间信号的来源和传输两个方面相结合,彻底摆脱对GPS 的依赖。
目前业界纷纷把目光投向 PTN,通过PTN 分组网络上提供高精度同步的解决方案,从而实现GPS 替代。
PTN 网络实现时间同步的相关技术
在基于 PTN 分组网络中,同步技术可以通过同步以太网G.8261 和精确时间同步协议IEEE1588V2 来实现。G.8261 通过以太网物理层PHY 芯片从串行数据码流中恢复出发送端的时钟,这种方式与SDH 时钟恢复方式是相同的,并且可以获得类似SDH 的时钟精度,实现网络时钟同步。时钟同步质量接近SDH,不会受到数据网络拥塞、丢包、时延等影响。但目前同步以太网只能支持频率信号的传送,不支持时间信号的传送,所以单纯的同步以太网方案只适用于不需要时间同步要求的场景。IEEE1588的核心思想是采用主从时钟方式,对时间信息进行编码,利用网络的对称性和延时测量技术,实现主从时间的同步,其关键在于延时测量,如图1。IEEE1588V2进行频率同步时虽然可以独立于同步以太网实现频率同步,但相对于同步以太网,PTP有较长的收敛时间,频率精确度依赖于时戳的颗粒度。网络

PTN时间同步方案网络应用的几个关键问题
时间同步是3G移动制式提示的新需求,目前中国移动尚没有一张精确的时间同步网,时间同步解决方案的部署应该采用逐步建设的方式。
时间源首先部署在本地网核心机房RNC侧,对RNC进行授时,RNC通过带外的方式将PPS(频率)和TOD(时间)信息传递给PTN设备,PTN设备运行1588V2协议,将同步信息传递到各个基站侧。因为目前现网部署的基站绝大部分都不支持1588V2协议,如果要进行现网改造,其成本和工作量巨大,此时接入端PTN设备采用带外的方式将同步信息传递给基站。如果基站已经支持1588V2协议,则接入端PTN设备通过带内FE/GE接口同时将业务和时间信息传递给基站(如图2所示)。网络

PTN网络运行SSM和BMC的协议方式,实现时间链路的自动保护倒换,保证时间的可靠传送。
PTN时间同步方案在网络中应用,有几个关键问题值得探讨。
精度问题
TD-SCDMA空口同步要求非常精确,频率精度为0.05ppm,时间同步精度为1.5us,这是空口端到端的指标要求,而分配到承载网一般为900ns左右。如果网络较大,穿通的节点数多,其精度是否满足要求?一般来讲,基于物理层同步的G.8261可以提供较高质量的参考时钟,但不能实现时间的同步;而IEEE1588V2同步方式既可以实现频率同步,也可以实现时间同步,但1588报文经过复杂的数据网路,抖动和非对称性的不可控,导致从1588报文中恢复时钟和时间精度难以保证。因此在实际应用中可以考虑两种同步方式相结合的办法,通过G.8261完成精确的频率同步,在G.8261基础上实现1588V2时间同步,硬件实现1588协议中精确时戳的插入和提取,减少1588报文发包频率,加快收敛速度,有效提高时间同步精度。
补偿问题
这里谈到的补偿,涉及到两个方面:1PPS+TOD线缆延时补偿和光纤线路不对称补偿。
前面讲到1588的关键在于延时测量。同步时间源一般是通过带外线缆将1PPS和TOD信息传递给PTN设备,另外目前现网中大部分基站都不具备1588能力,PTN设备也需要通过带外的方式,将1PPS和TOD传递基站。如果时间源和基站不具备延时补偿能力,需要PTN设备完成这部分线缆引入的延时补偿,将补偿结果加到TOD信息。
可靠性问题
为保证PTN网络对时间信息的可靠传输,必须对输入时间源和传输链路实行可靠保护设计。
首先对PTN设备通过1PPS+TOD接口采用高精度时间源进行授时,保证系统在一定的时间内可靠稳定地运行,条件许可情况下,采用主备两个高精度时间源,增加时间原的冗余备份能力。
PTN传送网物理链路一般采用环型组网,汇聚层和接入层采用相交环或相切环实现互联,每个外时间源通过环形链路中不同两点接入主用链路和备用链路。在PTN网络中启用BMC算法,BMC算法可基于时钟质量和最短节点路径选择最优的时间源,有效减少时钟质量的累加误差,增加时钟源的冗余备份能力。

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分