差分接口改善射频收发器典型设计案例

RF/无线

1823人已加入

描述

  简介

  传统收发器设计中,50 Ω单端接口广泛用于射频和中频威廉希尔官方网站 。当威廉希尔官方网站 进行互连时,应全部具有匹配的50 Ω输出和输入阻抗。然而在现代收发器设计中,差分接口常用在中频威廉希尔官方网站 中以获得更好的性能,但实际设计过程中,工程师需要处理几个常见问题,包括阻抗匹配、共模电压匹配以及复杂的增益计算。了解发射机和接收机中的差分威廉希尔官方网站 对优化增益匹配和系统性能很有帮助。

  差分接口优势

  差分接口有三大主要优势。首先,差分接口可抑制外部干扰和接地噪声。其次,它可以抑制偶次阶输出失真。这对于零中频(ZIF)接收机非常重要,因为出现在低频信号中的偶次阶成分无法滤除。第三,输出电压可达到单端输出的两倍,从而将给定电源上的输出线性度提高6 dB。

  本文论述三种情况下的接口解决方案:ZIF接收机、超外差式接收机和发射机。这三种架构广泛用于射频拉远单元(RRU)、数字直放站和其他无线测试仪器中。

  ZIF接收机接口设计和增益计算

  在零中频(ZIF)接收机设计中,IF信号是复信号,直流和低频率信号来提供有用信息。典型解调器在驱动200 Ω至450 Ω负载时可提供最佳性能,同时ADC驱动器的输入阻抗一般并非50 Ω,因此设计系统时采用直流耦合很重要也很困难。

  图1显示了一个ZIF接收机配置,它使用两个低噪声放大器(LNA) ADL5523 一个400MHz至6000MHz正交I/Q解调器ADL5380、一个作为本振(LO)的宽带频率合成器ADF4350以及一个双通道数字可编程可变增益放大器(VGA)AD8366。表1显示了相关ADL5380接口和增益参数。

  射频收发器

  图1. ZIF接收机框图

  表1.ADL5380接口和增益参数

射频收发器

  与具有217 Ω差分输入阻抗的AD8366接口时,ADL5380具有5.9 dB电压增益和–0.5 dB功率增益[5.9 dB – 10log (217/50)]。为获得最佳性能,将ADL5380 ADJ引脚连接至VS,使ADL5380与AD8366间的共模电压设置为2.5 V。在ADL5380与AD8366间放置具有0.5 dB插入损耗的差分四阶巴特沃兹低通滤波器,以便抑制噪声和高频干扰成分。虽然滤波器会输入和输出阻抗并不匹配,但在基带频率下这些不匹配是可以忽略的。

  表2.AD8366接口和增益参数

射频收发器

  AD8366的共模输出电压可设置为2.5 V;当VCM保持浮空时其线性度最佳。遗憾的是,AD6642在0.9 V共模输入电压(0.5 × AVDD)下具有最佳性能。由于AD8366的共模输出电压必须介于1.6 V与3 V之间,因此AD6642 VCM和AD8366 VCM引脚无法直接连接,必须使用电阻将AD8366共模输出电压分压至0.9 V。

  为获得最佳性能,AD8366应驱动200Ω载。要实现所需的共模电平和阻抗匹配,可在AD8366后添加63 Ω串联电阻和39 Ω并联电阻。这一电阻网络将使信号功率衰减4 dB。

  AD8366的输出摆幅可达6 V p-p,但电阻网络提供的4 dB衰减使AD6642得到的电压限于2.3 V p-p,避免了较大干扰尖峰或增益的失控对ADC带来损害。

  在AD8366与AD6642间放置具有1.5 dB插入损耗的差分六阶巴特沃兹低通滤波器,可以滤除高频干扰成分。I或者Q通道的完整差分接口如图2所示。

  射频收发器

  图2.ZIF接收机接口框图和仿真滤波器特性

  为保留足够的余量来应付整个温度范围内的增益变化,AD8366在正常模式下的增益设置为16 dB。

  采用这种配置,整个信号链的增益如下:

  5.9 dB – 10log (217/50) – 0.5 dB + 16 dB – 10log (200/217) – 1.5 dB – 4 dB = 9.9 dB.

  在ADL5380之前以级联方式插入的两个LNA实现了32 dB的射频增益。由于模数转换器被配置为2 V p-p满幅摆幅和78 Ω等效输入阻抗,它可以接收最大–34 dBm的单音RF输入信号。如果输入信号是具有10 dB峰均比(PAR)的调制信号,在不改变VGA设置情况下,接收机可以接收的最大输入信号为-41dBm。

  换言之,电压增益可用于计算信号链链路预算。当输入端口阻抗等于输出端口阻抗时,电压增益等于功率增益。整个信号链的电压增益为:

  32 dB + 5.9 dB – 0.5 dB + 16 dB – 1.5 dB – 8 dB = 43.9 dB.

  对于单音信号输入,要获得2 V p-p摆幅范围,正确的输入功率为:

  8 dBm – 43.9 dB + 10log (78/50) = –34 dBm.

  用电压增益计算的结果与功率增益计算出结果是相同的。

  某些应用中,ADL5380可能需要直接连接至AD6642,这种情况下,可为AD6642差分输入添加500 Ω电阻以改善匹配。ADL5380电压增益为6.9 dB,且具有与AD8366相同的共模问题。所以应使用160 Ω串联电阻和100 Ω并联电阻来实现500 Ω负载和所需的共模电压。同样,电阻网络可将电压增益衰减8 dB(功率则衰减4 dB)。

  在ADL5380与AD6642间放置具有1.5 dB插入损耗的低通滤波器,从而滤除干扰频率成分。整个链路的输入阻抗为50 Ω,输出阻抗为500 Ω。采用这种配置,整个信号链的增益如下:

  6.9 dB – 10log (500/50) – 1.5 dB – 4 dB = –8.6 dB.

  超外差式接收机接口设计和增益计算

  超外差式接收机设计中,系统使用交流耦合,因此设计超外差接收机威廉希尔官方网站 时不必考虑直流共模电压匹配。

  许多混频器,例如ADL535x和ADL580x,具有200 Ω的差分输出阻抗,因此不同输出阻抗呈现不同功率增益和电压增益。

  图3显示了超外差式接收机的一个通道,该器件采用以下元件:低噪声放大器ADL5523具有LO缓冲器、IF放大器和RF巴伦的双通道平衡混频器ADL5356;带通或者低通滤波器;双通道、超低失真IF VGAAD8376另一个低通或者带通抗混叠滤波器;双通道IF接收机AD6642

  射频收发器

  图3.超外差式接收机框图(仅显示一个通道)

  该设计使用140MHz 中频和20MHz带宽,因此器件连接时可采用交流耦合。

  AD5356在200 Ω负载下具有最佳性能,而AD8376的输入阻抗为150 Ω。因此,为了抑制混频器输出杂散并提供良好的阻抗匹配,差分LC滤波器必须具有200 Ω的输入阻抗和150 Ω的输出阻抗。在某些应用中,需要通过过渡带极窄滤波器抑制频带外信号,可使用差分SAW滤波器来实现,但这会给接收机信号链引入过大的损耗和群延迟。四阶差分带通巴特沃兹滤波器可适合许多无线接收机,因为前端RF滤波器可以为带外干扰提供足够的衰减。

  表3. ADL5356和AD8376接口和增益参数

射频收发器

  AD8376的电流输出型威廉希尔官方网站 具有高输出阻抗,因此其差分输出需要接150 Ω电阻实现电压输出。另一个差分滤波器放置在AD8376和ADC之间,用于衰减二阶和三阶谐波失真成分,因此该150 Ω负载可以被分成两部分。首先将300 Ω电阻安装于AD8376的输出端。另一个300 Ω电阻由两个165 Ω电阻和ADC的3 kΩ输入阻抗构成。两个165 Ω电阻同时为ADC输入提供直流共模电压。LC滤波器的输入和输出阻抗均为300 Ω。对于高中频应用,信号源和负载的阻抗的完美匹配是非常重要的。完整接口如图4所示。

  射频收发器

  图4.超外差式接收机接口框图和滤波器仿真结果

  此接收机中,混频器之前放置一个20 dB LNA。混频器之后的滤波器具有2 dB插入损耗;AD8376与ADC之间的滤波器具有1.2 dB插入损耗。AD8376增益设置为14 dB,以便提供足够的余量来应对温度变化。接收机的总体增益为:

  20 dB + 8.2 dB – 2 dB + 14 dB – 1.2 dB = 39 dB.

  为将ADC输入电压限制在2 V p-p以下,传输到150 Ω电阻(300 Ω || (165 Ω × 2) || 3 k Ω)的功率应小于5.2 dBm。因此对于单音信号,接收机最大输入功率为–33.8 dBm。如果输入信号是10 dB PAR调制信号,使用此增益设置的最大输入信号为–40.8 dBm。

  发射机接口设计和增益计算

  对于发射通道设计,ZIF和超外差式架构具有相似的接口特性,均需要在TxDAC®与调制器间执行直流耦合。大多数调制器的中频输入威廉希尔官方网站 需要外部提供直流偏置;TxDAC输出可为直流耦合模式下的调制器提供直流偏置。大多数高速DAC是电流输出架构,因此需要外输出电阻才能为调制器产生输入电压。

  图5显示了超外差式或ZIF发射机,该器件采用以下元件:TxDACAD9122、低通滤波器、正交调制器ADL537x、另一个RF滤波器、频率合成器ADF4350、数字控制VGAADL5243、功率放大器、用于控制功率放大器(PA)栅极电压的DACAD562x.

  射频收发器

  图5.发射机框图

  对于AD9122,满量程输出电流可设置在8.66 mA与31.66 mA之间。对于大于20 mA的满量程电流,无杂散动态范围(SFDR)会变差,但DAC的输出功率和ACPR也随着满量程电流降低而减小。适当折衷的方案是将20 mA交流电流叠加于10 mA直流电平上,得到0 mA至20 mA的电流输出。

  表4.AD9122和ADL5372接口和增益参数

射频收发器

  ADL5372的输入威廉希尔官方网站 需要0.5 V共模电压,由流经50 Ω电阻的10 mA直流电流提供。0 mA至20 mA交流电流由两个50 Ω电阻和一个100 Ω电阻共享。因此调制器输入的交流电压为20 mA × ((50 × 2) || 100) = 1 V p-p。TxDAC与调制器之间的滤波器用于去除高频杂散和谐波成分。滤波器的输入和输出阻抗为100 Ω。完整接口如图6所示。

  射频收发器

  图6.直流耦合发射机IF接口框图和滤波器仿真结果

  采用50 Ω输出时,ADL5372的电压转换增益为0.2 dBm。使用13 dB PAR调制器信号时,平均功率必须至少减小15 dB,以便适应Tx数字预失真过程。ADL5372具有1 V p-p单音输入时,平均调制器输出功率为7.1 dBm – 2.9 dB = 4.2 dBm。如果考虑低通滤波器的2.2 dB插入损耗,平均输出功率为4.2 dBm – 2.2 dB = 2 dBm。这种状态下,调制器输出端平均输出功率为-10dBm。

  为了保证发射链路提供11 dBm平均发射功率,Tx信号链内后端需要具有26 dBm 的P-1dB的PA驱动器。如果需要2 dB插入损耗的RF滤波器以抑制LO馈通和调制器边带输出,那么增益模块和PA驱动器必须提供23 dB的总增益。针对此应用,建议使用具有集成式增益模块、数字控制衰减器和PA驱动器的VGA ADL5243。

  结束语

  本文介绍了ZIF和超外差式接收机解调器、IF VGA、混频器和ADC模拟端口差分设计,以及TxDAC与FMOD之间的发射机差分接口,其中均使用ADI器件作为信号链有源部分。另外还提供了设计用于这些威廉希尔官方网站 的应用滤波器的增益计算和仿真结果。

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分