Documents Needed
The AD9574 evaluation board is a compact, easy-to-use platform for evaluating all features of the AD9574. The AD9574 provides a multiple output clock generator function comprising of a dedicated PLL core optimized for Ethernet and gigabit line card applications. Configuring the AD9574 for a particular application requires only the connection of external pull-up or pull-down resistors to the appropriate pin program reader pins (PPRx). These pins provide control of the internal dividers for establishing the desired frequency translations, clock output functionality, and input reference functionality. Connecting an external 19.44 MHz or 25 MHz oscillator to one or both of the REF0_P/REF0_N or REF1_P/REF1_N reference inputs results in a set of output frequencies prescribed by the PPRx pins. Connecting a stable clock source (8 kHz/10 MHz/19.44 MHz/25 MHz/38.88 MHz) to the monitor clock input enables the optional monitor circuit providing quality of service (QoS) status for REF0 or REF1.
The following instructions are for setting up the physical connections to the AD9574/PCBZ evaluation board.
Connect the included 6V wall supply to P500 to power all of the necessary on board components. Ensure the P501 jumper is connected between pins 1 and 2 and P502 is connected between pins 1 and 2. Alternatively, the user may remove the jumper at P502 and connect an external 3.3V supply to pin 2 and pin 3 (GND).
The AD9574/PCBZ allows for the reference inputs to be clocked by one of two crystal oscillators (XO) at Y202 and Y204 or via single ended SMA connectors J217 and J215. The default signal path is to use 25MHz CMOS XOs for both REF0_P and REF1_P.
The following board modifications from the default BOM are required to use the SMA reference input connectors to supply a differential reference instead of the 25MHz XOs:
The following board modifications from the default BOM are required to use the SMA reference input connectors to supply an external single ended CMOS reference input instead of the 25MHz XOs:
- Remove R214, R217, R218, R221, R224, R225, T201 and T202
- Place R212, R219, C221, C222, C226, and C227 with 0Ω resistors.
The AD9574/PCBZ provides a signal path to the MCLK_x inputs using SMA connector J216. The default BOM configuration allows for a 3.3V single ended CMOS signal to be applied to SMA connector J216 with the monitor clock input set to differential using the PPR6 biasing jumpers.
The following board modifications from the default BOM are required to use a single ended 3.3V CMOS signal with the monitor clock set to a single ended receiver:
The following board modifications from the default BOM are required to convert a single ended signal to differential with the monitor clock receiver set to a differential receiver:
The AD9574/PCBZ contains jumpers to bias the following pins on the AD9574:
The following subsections describe the various configuration options for these pins.
The AD9574 makes use of seven PPRx pins to configure the device. Internal circuitry scans the PPRx pins for the presence of resistor terminations and configures the device accordingly. The array of jumper headers near the bottom of the evaluation board allow for easy configuration of the 7 PPR pin terminations. A PPRx pin scan occurs automatically as part of the power-on reset sequence or following assertion of the RESET pin.
Each PPRx pin controls a specific function or functional block within the device as defined in Table 1.
Table 1. PPRx Pin Function and Jumper Assignments
Mnemonic | Assigned Evaluation Board Jumpers | Function Assignment |
---|---|---|
PPR0 | P402-P404 | Reference input configuration |
PPR1 | P406-P408 | Frequency translation settings |
PPR2 | P410-P412 | OUT0_x and OUT1_x configurations |
PPR3 | P414-P416 | OUT4_x and OUT5_x configurations |
PPR4 | P418-P420 | OUT6_x configuration |
PPR5 | P422-P424 | Reference clock frequency monitor error threshold |
PPR6 | P426-P428 | Monitor clock (MCLK) input configuration |
Each set of 3 jumpers allows for the user to configure various PPRx pins to one of 8 states. These states are defined in Table 2.
Table 2. PPRx States
State | Resistance | Terminus |
---|---|---|
0 | 820Ω | GND |
1 | 1.8kΩ | GND |
2 | 3.9kΩ | GND |
3 | 8.2kΩ | GND |
4 | 820Ω | VDD |
5 | 1.8kΩ | VDD |
6 | 3.9kΩ | VDD |
7 | 8.2kΩ | VDD |
There are three headers, each 3 pins wide, to select the 8 states listed in Table 2. Figure 2 shows a layout capture of the available jumpers for a single PPRx pin. Figure 3 shows an example configuration to set PPR0 to state 0.
Note that only two jumpers are needed to correctly terminate each PPRx pin; one to set the resistance value and one to terminate the resistance to VCC or GND. Please refer to the AD9574 datasheet or page 3 of the evaluation board schematic for more information about the available settings for each PPRx pin.
The REF_SEL and REFMON pins are tied low or high via jumpers P101 and P102 respectively. Table 3 shows the functions of these pins.
Table 3. REF_SEL and REFMON Settings
Pin Name | Jumper | Connected to GND | Connected to VCC |
---|---|---|---|
REF_SEL | P101 | REF0 | REF1 |
REFMON | P102 | Reference monitor disable | Reference monitor enable |
There are 5 status LEDs:
The quick start section covers simple PLL operation to lock the AD9574 PLL and output various frequencies on OUT0 through OUT6. See the AD9574 datasheet for a detailed explanation of the various AD9574 features.
Table 4 describes a summary of one possible operating mode of the AD9574 which is setup used for this quick start guide.
Table 4. Quick Start Summary
Parameter | Value |
---|---|
Input Frequency and Logic Type | 25MHz, 3.3V CMOS |
PLL VCO Frequency | 2500MHz |
Reference Doubler Enable/Disable | Disable |
Reference Monitor Threshold | +/- 50ppm |
MCLK Input Frequency and Logic Type | 10MHz 3.3V CMOS |
Reference Doubler Enable/Disable | Disable |
OUT0 Frequency and Logic Type | 25MHz 3.3V CMOS |
OUT1 Frequency and Logic Type | 25MHz 3.3V CMOS |
OUT2 Frequency and Logic Type | 156.25MHz HSTL |
OUT3 Frequency and Logic Type | 156.25MHz HSTL |
OUT4 Frequency and Logic Type | 100MHz HSTL |
OUT5 Frequency and Logic Type | 125MHz HSTL |
OUT6 Frequency and Logic Type | 33.33MHz 3.3V CMOS |
Use the following steps to lock the AD9574 PLL to the on board 25MHz XO and output the frequencies listed in Table 4.
The red LED labeled DS106 is connected to the LD pin through a buffer and should be illuminated indicating that the AD9574 is now in a locked condition.
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !