为了满足飞行器实时飞行过程中对大量异构输入数据的信息处理需求,文中提出了一种神经网络,其包括卷积定点滑动核、池化压缩量化核以及全连接压缩融合核,将飞行器异构传感器多路并行数据作为系统的输入,将辨识结果作为系统的输。卷积滑动窗口核通过排除冗佘数据的湑动窗快速实现教据特征的提取;池化压缩量化核使用压缩量化技术来提髙高系统的执行效率;全连接压缩融合核经删减量化后压缩融合并输出。该设计满足了飞行器对高可靠性、低功耗的在线智能集成需求。使用所提压缩量化方法,准确率最高可达98.54%,压缩率为77.8%,运行速度提升了40倍。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !