内网恶意内部活动的证据通常隐藏在大型数据流中,例如数月或年累积的系统日志,然而数据流往往是无界的、不断变化的和未标记的。因此,为实现高度准确的异常检测,提出集成流挖掘和图挖掘的内网异常检测方法,在发挥图挖掘的无监督优势的冋时,融入了流挖掘的良好自适应能力。采用集成的方法,通过集成分类和更新,当出现概念漂移时,保证集成适应当前概念,使之可以检测到内网恶意行为。实验证明基于集成的方法比传统的单模型方法更有效,可以有效识别随时间改变其行为来隐藏恶意活动的内网异常,在面对隐藏在大量数据流中的内网异常且无标记的数据时,所提出的基于流挖掘和图挖掘的集成方法是十分有意义的。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !