跨网络用户匹配的目的是识别不同社交网络上属于同一用户的不同账户,在好友推荐、网络安全和链路预测等方面有重要意义。现有方法通常利用部分已知匹配用户,迭代识别其余待匹配用户。然而,目前大部分方法受限于已知匹配用户的数量,无法在较低的时间内精准地识别用户。提出了结合全局种子最优局部扩展的跨网络用户识别方法(GLE)。首先,为有效解决冷启动问题,提岀了全局种子扩展模型(GSE)来丰富知匹配用户数量;然后,为了在较低的时间代价上确保较高的准确性,提岀了最优局部扩展模型来找到最优候选匹配对。最后,实验结果表明,该算法可显著提高用户识别的召回率和准确率,具有较低的时间开销,并解决了已知匹配用户数量不足时的识别问题。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !