在语音情感识别中提取梅尔频率倒谱系数(MFC℃)会丢失谱特征信息,导致情感识别准确率较低。为此,提出一种结合MFCC和语谱图特征的语音情感识别方法。从音频信号中提取MFCC特征,将信号转换为语谱图利用卷积神经网络提取图像特征。在此基础上,使用多核学习算法融合音频特征,并将生成的核函数应用于支持向量机进行情感分类。在2种语音情感数据集上的实验结果表明,与单一特征的分类器相比,该方法的语音情感识别准确率高达96%。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !