如何用OpenCL实现FPGA上的大型卷积网络加速?

描述

Xilinx zynq系列FPGA实现神经网络评估

本篇目录

1. 内存占用

1.1 FPGA程序中内存的实现方式

1.2 Zynq的BRAM内存大小

1.3 一个卷积操作占用的内存

2. PipeCNN可实现性

PipeCNN论文解析:用OpenCL实现FPGA上的大型卷积网络加速

2.1 已实现的PipeCNN资源消耗

3. 实现大型神经网络的方法

4. Virtex-7高端FPGA概览、7系列FPGA相关文档

正文

0Zynq7000系列概览

神经网络

1内存占用

1.1 FPGA程序中内存的实现方式

参阅xilinx文档UG998

神经网络

FPGA并没有像软件那样用已有的cache,FPGA的HLS编译器会在FPGA中创建一个快速的memory architecture以最好的适应算法中的数据样式(data layout)。因此FPGA可以有相互独立的不同大小的内部存储空间,例如寄存器,移位寄存器,FIFOs和BRAMs。

寄存器:最快的内存结构,集成在在运算单元之中,获取不需要额外的时延。

移位寄存器:可以被当作一个数据序列,每一个数据可以在不同的运算之中被重复使用。将其中所有数据移动到相邻的存储设备中只需要一个时钟周期。

FIFO:只有一个输入和输出的数据序列,通常被用于循环或循环函数,细节会被HLS编译器处理。

BRAM:集成在FPGA fabric模块中的RAM,每个xilinx的FPGA中集成有多个这样的BRAM。可以被当作有以下特性的cache:1.不支持像处理器cache中那样的缓存一致性(cache coherency,collision),不支持处理器中的一些逻辑类型。2.只在设备有电时保持内存。3.不同的BRAM块可以同时传输数据。

1.2 Zynq的BRAM内存大小

神经网络

zynq 7z020的BRAM为4.9Mb,7z035的BRAM为17.6Mb(2.2MB)

神经网络

1.3 一个卷积操作占用的内存

例如,我们实现的卷积函数,输入27×600,卷积核16×27,输出16×600,数据类型为float。

//convolution operation for (i = 0; i 《 16; i++) { for (j = 0; j 《 600; j++) { result = 0; for (k = 0; k 《 27; k++) { temp = weights[i*27+k] * buf_in[k*600+j]; result += temp; } buf_out[i*600+j] = result; } }

在HLS中生成的IPcore占用硬件资源为:

神经网络

神经网络

神经网络

在vivado中搭建好系统,占用的资源为:

神经网络

神经网络

2PipeCNN可实现性

PipeCNN是一个基于OpenCL的FPGA实现大型卷积网络的加速器。

PipeCNN解析文档:

PipeCNN论文解析:用OpenCL实现FPGA上的大型卷积网络加速

github地址:https://github.com/doonny/PipeCNN#how-to-use

2.1 已实现的PipeCNN资源消耗

对于Altera FPGA,运用 Intel‘s OpenCL SDK v16.1 toolset.

对于Xilinx FPGAs, the SDAccel development environment v2017.2 can be used.

神经网络

Xilinx’s KCU1500 (XCKU115 FPGA)(已经有xilin的板子实现过pipeCNN,但是型号比zynq高很多)

 

硬件资源可以被三个宏调控,device/hw_param.cl. Change the following macros

VEC_SIZE

LANE_NUM

CONV_GP_SIZE_X

消耗资源为:

神经网络

神经网络

3实现大型神经网络的方法

方案一:压缩模型到《2.2MB,可实现在BRAM中

优点:1.速度快 2.实现方便

缺点:1.模型压缩难度 2.难以实现大型网络

方案二:用FPGA调用DDR

优点:1.速度中等 2.可实现大型网络

缺点:调用DDR有难度,开发周期长

方案三:用片上单片机调用DDR(插入SD卡)分包传入IPcore运算

优点:可实现大型网络

缺点:速度较慢

4Virtex-7高端FPGA概览

Virtex-7为高端FPGA,比Zynq高了一个档次。

 

神经网络

7系列FPGA相关文档:

神经网络

原文标题:Xilinx Zynq系列FPGA实现神经网络中相关资源评估

文章出处:【微信公众号:FPGA之家】欢迎添加关注!文章转载请注明出处。

责任编辑:haq

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分