作者:Nagesh Gupta
创始人兼 CEO
Auviz Systems
Nagesh@auvizsystems.com
凭借出色的性能和功耗指标,赛灵思
FPGA 成为设计人员构建卷积神经网络的首选 XE "" XE "" XE "" XE ""。新的软件工具可简化实现工作。
人工智能正在经历一场变革,这要得益于机器学习的快速进步。在机器学习领域,人们正对一类名为“深度学习”算法产生浓厚的兴趣,因为这类算法具有出色的大数据集性能。在深度学习中,机器可以在监督或不受监督的方式下从大量数据中学习一项任务。大规模监督式学习已经在图像识别和语音识别等任务中取得巨大成功。
深度学习技术使用大量已知数据找到一组权重和偏差值,以匹配预期结果。这个过程被称为训练,并会产生大型模式。这激励工程师倾向于利用专用硬件(例如 GPU)进行训练和分类。
随着数据量的进一步增加,机器学习将转移到云。大型机器学习模式实现在云端的 CPU 上。尽管 GPU 对深度学习算法而言在性能方面是一种更好的选择,但功耗要求之高使其只能用于高性能计算集群。因此,亟需一种能够加速算法又不会显著增加功耗的处理平台。在这样的背景下,FPGA 似乎是一种理想的选择,其固有特性有助于在低功耗条件下轻松启动众多并行过程。
让我们来详细了解一下如何在赛灵思 FPGA 上实现卷积神经网络 (CNN)。CNN 是一类深度神经网络,在处理大规模图像识别任务以及与机器学习类似的其他问题方面已大获成功。在当前案例中,针对在 FPGA 上实现 CNN 做一个可行性研究,看一下 FPGA 是否适用于解决大规模机器学习问题。
卷积神经网络是一种深度神经网络 (DNN),工程师最近开始将该技术用于各种识别任务。图像识别、语音识别和自然语言处理是 CNN 比较常见的几大应用。