在标准灰狼优化算法寻优的中后期,由于衰减因子减小,灰狼群体中的个体均向领导层灰狼所在区域靠近,导致算法的全局寻优能力差,降低了寻优精度。针对该问题,提出了一种改进灰狼优化算法( Improved grey Wolf Optimization,IGWO)。该算法首先分析了衰减因子对灰狼算法( Grey Wolf Optimization,GWO)的影响,提出了一种分段可调节衰减因子,用于平衡算法的勘探能力与开发能力。其可以根据不同优化问题来寻找适当的参数,实现更高精度的寻优,并且保证了在寻优过程的中后期,算法也具有一定的全局搜索能力。数值仿真实验表明,提高勘探比例有利于提髙算法的收敛精度。冋时,在寻优过程中,根据概率选择对领导层灰狼分别进行莱维飞行操作或随杋游动操作。利用莱维飞行短距离搜索与偶尔较长距离行走相间的搜索特点,提高算法的全局寻优能力;利用随杋游动相对集中的搜索特性,提高局部寻优能力。最后,对8个标准测试函数进行仿真实验,并与其他几种算法进行比较,实验结果表明,所提算法在寻优精度、算法稳定性及收敛速度上都有较大优势。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !