RTD热电阻测温的驱动设计与实现

描述

我们已经讨论过多种温度检测方式,但我们尚未关注热电阻温度检测,但热电阻测温在工业环境中是非常常见的。尽管有很多集成的数字式的热电阻接口元器件,但这些器件不但成本较高,灵活性也大打折扣。所以我们有时会使用更简单灵活的威廉希尔官方网站 来驱动RTD。而在这一篇中,我们将讨论如何设计并实现RTD热电阻测温的驱动。

1、功能概述

  RTD热电阻是常用的测温元件。RTD的英文全称为“Resistance Temperature Detector”,因此准确来说,它应该翻译为“电阻温度检测器”。RTD是一种特殊的电阻,其阻值会随着温度的升高而变大,随着温度的降低而减小。工业上利用它的这一特性进行温度测量,因此RTD也被俗称为“热电阻”。

  并不是所有的金属都适合做成RTD,符合这一特性的材料需要满足如下几个要求:

  • 该金属的电阻值与温度变化能呈线性关系;
  • 该金属对温度的变化比较敏感,即单位温度变化引起的阻值变化(温度系数)比较大;
  • 该金属能够抵抗温度变化造成的疲劳,具有好的耐久性;

  符合该要求的金属并不多,常见的RTD材料有:铂(Pt)、镍(Ni)和铜(Cu)。对应的国家统一生产工业标准化热电阻有三种:WZP型铂电阻、WZC型铜热电阻和WZN型镍热电阻。

1.1、铂热电阻

  铂电阻是我们常用的RTD,铂热电阻采用温度系数为3.885x10-3的元件,温度和电阻的关系表达式:

  在-200℃~0℃为:

热电阻

  在0℃~850℃为:

热电阻

  其中:Rt温度为t℃时的电阻;R0是温度为0℃时的电阻。而各个系数均为常数:

  常数A=3.9083×10-3

  常数B=-5.775×10-7

  常数C=-4.183×10-12

  铂热电阻对应的测温范围是:-200℃~850℃。常见的型号Pt50、Pt100、Pt200、Pt500和Pt1000等。名称中的数值表示热电阻在0℃下的标称电阻值。

1.2、铜热电阻

  铜热电阻也是在工业上常用的RTD,铜热电阻采用温度系数为:4.28x10-3的元件。温度和电阻的关系表达式:

热电阻

  其中,Rt是温度为t℃时的电阻,R0是温度为0℃时电阻,而各个系数长数的取值为:

  常数α=4.28x10-3

  常数β=-9.31x10-8

  常数γ=1.23x10-9

  铜热电阻对应的测温范围是:-50℃~150℃。而常见的分类型号有:Cu50、Cu100等。名称中的数值表示热电阻在0℃下的标称电阻值。

1.3、镍热电阻

  另一种工业标准RTD则是镍热电阻。镍热电阻采用温度系数为6.17x10-3的元件。温度和电阻的关系表达式:

热电阻

  其中,Rt是温度为t℃时的电阻,R0是温度为0℃时电阻,而各个系数长数的取值为:

  常数A=5.485x10-3

  常数B=6.65x10-6

  常数C=2.805x10-11

  镍电阻对应的测温范围是:-60℃~180℃。而常见的分类型号有:Ni100、Ni300、Ni500等。名称中的数值表示热电阻在0℃下的标称电阻值。

2、驱动设计与实现

  我们已经了解了RTD的特性,以及不同材质的RTD温度与点组的关系表达式。接下来我们就实现通过RTD检测温度的驱动。

2.1、对象定义

  在实现RTD的驱动之前,我们依然需要抽象并定义RTD对象,并将其声明为对象类型。

2.1.1、对象的抽象

  在实现对RTD的操作之前,我们先抽象RTD对象。每一个RTD对象都有几个共同的属性:标称电阻,温度和类型。类型就是前面所描述的三种,我们将其定义为枚举。对象的声明如下:

/* 定义RTD类型枚举 */
typedef enum RTDCategory {
    WZP,
    WZC,
    WZN
}RTDCategoryType;

/* 定义RTD对象 */
typedef struct RTDObject{
    float nominalR;     //RTD标称电阻
    float temperature;       //所测温度
    RTDCategoryType type; //RTD类型
}RTDObjectType;

2.1.2、对象的初始化

  声明一个RTD对象后,仅仅只是声明了一个对象变量,在赋值之前尚不能使用。所以我们要使用初始化函数将其初始化之后才可使用。RTD对象的初始化函数如下:

/* 初始化RTD对象 */
void RTDInitialization(RTDObjectType *rtd,RTDCategoryType type,float nr)
{
    if(rtd==NULL)
    {
       return;
    }
   
    rtd->type=type;
    rtd->nominalR=nr;
}

2.2、对象操作

  前面我们已经提到了各类热电阻的电阻与温度的关系表达式。在这些表达式中,二次以上的项的系数其实是非常小的,所以在一般要求不高,温度变化不是很大的场合基本就是线性关系。所以我们将其简化为线性方程:

热电阻

2.2.1、WZP铂电阻

  铂电阻的温度与电阻的关系在0度以上和0度以下略有差别,但如果我们采用线性近似的话则是一样的。所以我们采用线性方程实现如下:

/* 计算铂电阻温度 */
static float CalcWzpTemperature(RTDObjectType *rtd,float rt)
{
float temp=0.0;
float a=0.0039083;
   
temp=((rt/rtd->nominalR)-1.0)/a;
rtd->temperature=temp;
   
return temp;
}

2.2.2、WZC铜电阻

  铜电阻的温度与电阻的关系表达式相对复杂,但好在高次项的影响相对较小,我们依然可以使用线性近似来实现它。

/* 计算铜电阻温度 */
static float CalcWzcTemperature(RTDObjectType *rtd,float rt)
{
float temp=0.0;
float alpha=0.00428;
   
temp=((rt/rtd->nominalR)-1.0)/alpha;
rtd->temperature=temp;
   
return temp;
}

2.2.3、WZN镍电阻

  镍电阻的电阻温度系数比铂电阻和铜电阻都要好,但其线性度则不如铂电阻,同样的是其高次项的影响也相对较小,在温度并不大范围变化时仍然可以采取线性近似。

/* 计算镍电阻温度 */
static float CalcWznTemperature(RTDObjectType *rtd,float rt)
{
float temp=0.0;
float a=0.005485;
   
temp=((rt/rtd->nominalR)-1.0)/a;
rtd->temperature=temp;
   
return temp;
}

2.2.4、统一温度获取

  面向不同类型的RTD,我们实现了各自的温度转换函数,但作为驱动函数库,我们总是希望能进行无差别调用。所以我们希望设计一个统一的接口函数。所幸每种类型RTD操作函数均有相同的格式,于是我们就很容易想到使用函数指针来处理它。

float (*CalcTemperature[])(RTDObjectType *rtd,float rt)={CalcWzpTemperature,CalcWzcTemperature,CalcWznTemperature};

/*计算热电阻测得的温度*/
float CalcRTDTemperature(RTDObjectType *rtd,float rt)
{
    float temp=0.0;

    temp=CalcTemperature[rtd->type](rtd,rt);

    return temp;
}

3、驱动的使用

  我们采用RTD测温时可以使用这一驱动。其实用步骤分两步:声明并初始化对象;调用函数计算温度值。接下来我们就来实现之。

3.1、声明并初始化对象

  首先使用RTDObjectType类型定义RTD对象,如果有多个可以使用数组方式定义。RTDObjectType rtd;或RTDObjectType rtd[N];的形式。其中N为数量。

  定义对象变量后和以调用初始化函数对齐进行初始化:

  RTDInitialization(&rtd,type,nr);

  其中type为RTDCategoryType枚举类型,可以是铂热电阻(WZP)、铜热电阻(WZC)和镍热电阻(WZN)。nr为所操作对象在0摄氏度时的标称电阻值。

3.2、调用函数计算温度值

  对象初始化后就可以操作对象来获取对象当前时刻的温度值。具体如下:

  CalcRTDTemperature(&rtd,rt);

  其中rt为当前对象的电阻值。

4、应用总结

  我们实现了RTD的检测,对得到的当前温度电阻值,使用根本驱动就可以计算得到当前的温度。

  本驱动支持铂热电阻(WZP)、铜热电阻(WZC)和镍热电阻(WZN)。对于不同该类型,不同标称值的对象均可以使用。不过需要注意:铂热电阻对应的测温范围是:-200℃~850℃;铜热电阻对应的测温范围是:-50℃~150℃;镍电阻对应的测温范围是:-60℃~180℃。超过范围的将不被支持。

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分