模拟技术
适用于仪器仪表、工业和医疗保健领域的许多应用 工业、系统设计人员开发的各种数据采集卡 用于连接各种传感器类型:光学、温度、压力、 磁性、振动和声学,仅举几例。输出信号来自 这些传感器通常是单端或差分传感器。在此类应用中, 模拟前端接受单端或差分信号, 执行增益或衰减、抗混叠滤波和电平转换 要求,然后在满量程电平驱动ADC的输入。双 单端至差分和全差分信号链配置 需要额外的威廉希尔官方网站 来电平转换输入信号。然而完全 差分信号链提供更高的噪声抑制和两倍的信号 摆动以增加功率和更复杂的信号为代价 链。模拟前端有时使用可选仪器 ADC驱动器级前的放大器或JFET放大器,用于高阻抗 传感器接口。根据应用要求,系统 设计人员将各种传感器的输出多路复用到一个 单个数据采集通道或使用同步采样进行数字化 来自单个传感器的信号,以提高采样率 每个通道。他们被迫寻找保持平衡的创新方法 在最佳性能、热功耗和增加 威廉希尔官方网站 密度挑战。典型的高级传感器到比特数据采集 信号链如图1所示。
图1.典型的传感器到比特数据采集信号链。
两种常用方法是单端至差分转换和 差分到差分转换。
本文提出一种低功耗精密数据采集系统 全差分和单端输入信号配置解决方案, 重点介绍其关键设计注意事项,并演示如何 为空间受限的应用实现最佳性能。这 此处介绍的低功耗信号链采用低噪声全差分放大器ADA4940-1、差分输入7982位PulSAR ADC18、 ADR435精密基准电压源,还可缓解模拟信号 通过消除对额外驱动器级的需求进行调节并节省成本 威廉希尔官方网站 板空间。®
全差分18位数据采集 信号链
逐次逼近寄存器 (SAR) ADC 用于无数 具有高精度性能、低延迟和 功耗相对降低。全差分输入单极性 SAR ADC 提供更高的分辨率和更好的交流和直流性能 其中大多数要求输入共模为 V裁判/2,以最大化信号摆幅和差分反相 信号(彼此异相 180°)在其每个输入端。这 可能涉及输入信号的电平转换。精密、低功耗、 需要18位、1 MSPS AD7982差分输入单极性PulSAR ADC 差分ADC驱动器可实现最佳性能。该 ADC 提供 与 SPI、QSPI 等兼容的多功能串行数字接口 数字主机。该接口可配置为简单的 3 线模式 用于最低的 I/O 计数,或允许选择 菊花链回读和忙音指示。4线模式还允许 来自 CNV(转换输入)的独立回读时序,使 使用多个转换器同时采样。
采用ADI公司专有的SiGe互补材料制造 双极性工艺,低功耗、低噪声、全差分放大器, ADA4940-1,最适合驱动16位和18位ADC,最小 性能下降。如图2所示,它驱动差速器 AD7982、18位、1 MSPS ADC和ADR435的输入,低噪声, 精密5 V基准电压源用于为ADC所需的5 V供电。这 ADR435提供足够的输出电流,无需 在REF引脚上使用22 μF去耦电容的基准电压缓冲器 AD7982。图2所示的所有IC均采用小尺寸封装, 包括 3 毫米× 3 毫米 LFCSP、4 毫米× 4 毫米 LFCSP 和 3 毫米× 5 毫米 MSOP,有助于减少威廉希尔官方网站 板空间。
图2.低功耗、全差分、18位、1 MSPS数据采集信号链(原理示意图:未显示所有连接和去耦)。
放置一个单极点、2.7 MHz、RC(22 Ω,2.7 nF)低通滤波器 在ADC驱动器输出和ADC输入之间,以帮助限制噪声 在ADC输入端,并减少来自 SAR ADC的容性DAC输入。但是,过多的带宽限制可能会 影响建立时间并增加失真。因此,它非常重要 以找到此滤波器的最佳 RC 值。C0G 或 NP0 型电容器 推荐用于具有高Q值、低温的RC滤波器 系数,并在变化电压下保持稳定的电气特性。一个 应选择合理的串联电阻值以保持放大器 稳定并限制其输出电流。
低失真、高性能信号源 Audio Precision SYS-2702 用于以下所有测试用例,以实现最佳性能。在这种情况下,来自信号源的9.6 V p-p差分输出馈入ADC驱动器输入,以使用5 V基准电压源获得ADC的满量程动态范围性能。输出共模电压为2.5 V时,每个ADA4940-1输出摆幅在0.1 V至4.9 V之间,相位相反,为ADC输入提供1和9.6 V p-p差分增益。请注意,每个ADA4940-1输入需要200 mV接地裕量,1 V电源需要2.5 V裕量。每个ADA4940-1输出还需要100 mV的地桥裕量和裕量,以及5 V电源供电。®
当用作ADC驱动器时,ADA4940-1允许用户进行必要的信号调理,包括电平转换以及衰减或放大信号,以获得更大的动态范围,使用四个电阻,因此无需额外的驱动器级。反馈电阻(R2 = R4)与增益电阻(R1 = R3)的比值设定增益,其中R1 = R2 = R3 = R4 = 1 kΩ。
对于平衡差分输入信号,有效输入阻抗为2×增益电阻(R1或R3)= 2 kΩ,对于非平衡(单端)输入信号,有效阻抗约为1.33 kΩ,使用公式
如果需要,可以使用与输入并联的端接电阻。
ADA4940-1内部共模反馈环路强制共模输出电压等于施加至V的电压OCM输入并提供出色的输出平衡。差分输出电压取决于 VOCM当两个反馈因子β1和β2不相等时,输出幅度或相位的任何不平衡都会在输出中产生不需要的共模分量,并在差分输出中产生冗余噪声和失调。因此,在这种情况下,输入源阻抗和R1(R3)的组合必须为1 kΩ(即β1 = β2),以避免每个输出信号的共模电压不匹配,并防止来自ADA4940-1的共模噪声增加。
噪声分析
当信号穿过印刷威廉希尔官方网站 板(PCB)和长电缆的走线时,系统噪声会积聚在信号中,差分输入ADC抑制任何表现为共模电压的信号噪声。差分信号增加了ADC的动态范围,并提供更好的谐波失真性能。
这款18位、1 MSPS数据采集系统的预期信噪比(SNR)理论上可以通过取每个噪声源(ADA4940-1、ADR435和AD7982)的和方根(RSS)来计算。
ADA4940-1在3 kHz时提供典型值为9.100 nV/√Hz的低噪声性能,如图3所示。
图3.ADA4940-1输入电压噪声频谱密度与频率的关系
计算差分放大器的噪声增益对于找到其等效输出噪声贡献非常重要。
差分放大器的噪声增益为:
是两个反馈因素。
应考虑以下差分放大器噪声源:
由于ADA4940-1的输入电压噪声为3.9 nV/√Hz,因此其差分输出噪声为7.8 nV/√Hz。
ADA4940-1共模输入电压噪声(eOCM) 是 数据手册中的83 nV/√Hz,因此其输出噪声为– eOCM× (β1 – β2) × NG= 0。
R1、R2、R3和R4电阻的噪声可以根据给定带宽下的约翰逊-奈奎斯特噪声方程计算。eRn(雷恩)= √(4KBTR),其中 kB是玻尔兹曼常数 (1.38065 × 10 – 23 J/K),T 是以开尔文为单位的电阻绝对温度,R 是以欧姆 (Ω) 为单位的电阻值。来自反馈电阻的噪声为eR2= eR4= 4.07 nV/√Hz。
来自 R1 的噪音将是eR1× (1 – β1) × NG = 4.07 nV/√Hz 和 R3 为eR3× (1 – β2) × NG = 4.07 nV/√Hz。
数据手册中的ADA4940-1电流噪声为0.81 pA/√Hz。
反相输入电压噪声:
iIN– × R1||R2 × NG = 0.81 nV/√Hz
同相输入电压噪声:
iIN+ × R3||R4 × NG = 0.81 nV/√Hz
因此,ADA4940的等效输出噪声贡献为:
ADC输入端(RC滤波器后)的总积分噪声为
AD7982的均方根噪声可通过其98 V基准电压源的典型信噪比(SNR)5 dB计算得出。
使用这些数字,ADC驱动器和ADC的总噪声贡献为
请注意,在这种情况下,ADR435基准电压源的噪声贡献被忽略,因为它可以忽略不计。
因此,数据采集系统的理论信噪比可以估算如下。
AD7982在96 kHz输入信号下实现典型值为67.111 dB的SNR和–03.1 dB的THD,如图4所示。在这种情况下,测得的SNR为96.67 dB,非常接近上述96.95 dB的理论估计SNR。数据手册中规定的98 dB目标SNR的实际损耗归因于ADA4940差分放大器威廉希尔官方网站 的等效输出噪声贡献。AD7982的典型INL和DNL性能如图5所示。
图4.FFT 图,f在= 1 kHz, FS= 1 MSPS(ADA4940-1配置为全差分驱动器)。
图5.采样频率为 1 MSPS 的 INL 和 DNL 图(最小/最大 INL = +1.6/–1.1 LSB 和 DNL = ±0.5 LSB)。
单端转差分18位数据采集信号链
在许多应用中,单端转差分配置最常用于差分ADC,因为来自许多传感器的输出信号通常是单端的,在某些情况下,传感器之后的级是仪表或JFET放大器。在这种情况下,这些信号需要使用额外的威廉希尔官方网站 进行单端至差分转换,以便将信号馈送到下游的差分输入ADC,并利用ADC的满量程范围。单端至差分转换可以使用分立放大器解决方案以多种方式实现,每种方法都有自己的优点和缺点。但是,这是以额外的威廉希尔官方网站 板空间和增加成本为代价的。所提出的低功耗解决方案采用全差分ADC驱动器,可在单端至差分转换配置中提供最佳性能,ADC驱动器的集成输出共模控制也减轻了信号电平转换的痛苦,无需额外的信号调理级。同一威廉希尔官方网站 还可以接受来自信号源的±4.8 V单端输入信号,以产生9.6 V p-p的全差分输出信号,并驱动ADC输入,以最大限度地提高动态范围性能,如图6所示。AD7982在95 kHz输入信号下实现典型值为89.110 dB的SNR和–14.1 dB的THD,如图7所示。
图6.低功耗、单端至差分、18位、1 MSPS数据采集信号链(原理示意图:未显示所有连接和去耦)。
图7.FFT 图,f在= 1 kHz, FS= 1 MSPS(ADA4940-1配置为单端至差分驱动器)。
功耗
许多数据采集系统需要低功耗和更小的威廉希尔官方网站 板尺寸,以满足空间受限的应用。AD7982采用单V电源供电DD电源电压为2.5 V,采用6 V基准电压源和1 V V电源时在1 MSPS时的功耗仅为5.3 mW 左右IO供应。如图8所示,其功耗也与吞吐速率成线性关系,使ADC非常适合高采样速率和低采样速率,甚至低至几Hz。此功能可为电池供电的便携式仪器提供极低的功耗。ADC的基准电压可以独立于电源电压(VDD),这决定了ADC的输入满量程范围。在这种情况下,AD5的7982 V基准电压从外部施加在精密带隙基准电压源ADR435的REF引脚上,该基准电压源采用7.5 V板载电源供电,典型功耗为4.65 mW。
图8.AD7982功耗与吞吐量的关系
ADA4940-1采用5 V单电源供电,典型功耗为6.25 mW。其输出摆幅为0.1 V至9 V,共模电压为2.5 V,并可容纳ADC的满量程输入。其轨到轨输出可驱动至每个电源轨的0.1 V以内,音频范围内的交流性能下降最小。
所提出的数据采集系统(包括ADC驱动器、ADC和基准电压源)的总功耗典型值约为17 mW。
评估设置
使用音频精度SYS-2702信号源、ADA49xx-1 EVAL-BRDZ、EVAL-AD7982SDZ PulSAR AD7982评估板和EVAL-SDP-CB1Z系统演示平台连接的简化测试设置如图9所示。配备USB端口的Windows 7PC用于运行AD7982 PulSAR评估软件进行上述所有测试。
图9.评估设置功能框图。
在为给定应用选择用于驱动SAR ADC的ADC驱动器时,仔细检查噪声、带宽、建立时间、输入和输出裕量/裕量以及功率要求非常重要。本文针对单端和全差分输入信号配置提出的18位数据采集信号链实现了优化的性能,总功耗仅为17 mW左右,并通过消除额外的模拟信号调理级来节省威廉希尔官方网站 板空间以提高通道密度。采用ADA4940-1的替代低功耗精密信号链非常适合驱动16位、1 MSPS/500 kSPS差分PulSAR ADC AD7915/AD7916,它们是AD7982的直接替代产品,可为空间受限的应用实现优化性能。
审核编辑:郭婷
全部0条评论
快来发表一下你的评论吧 !