概述
本应用笔记介绍了压控振荡器(VCO)的槽路设计方法,并给出了常用的中频(IF) 85MHz、190MHz、210MHz压控振荡器的设计实例。这些设计减少了为优化设计而进行的重复工作,具体分析可借助一个简单的电子表格实现。
VCO设计
图2表示MAX2310 IF VCO的差分槽路,为便于分析,所给槽路只是一个简单的等效模型。图1表示基本的VCO模型,振荡频率由式1表示:
fosc = 振荡频率
L = 槽路线圈的电感值
Cint = MAX2310槽路端口的内部电容
Ct = 槽路的总计等效电容
图1. 基本的VCO模型
Rn = MAX2310槽路端口的等效负阻
Cint = MAX2310槽路端口的内部电容
Ct = 槽路的总计等效电容
L = 槽路线圈的电感值
图2. MAX2310槽路
电感L与槽路等效电容和振荡器内部电容的总和产生谐振(Ct+Cint) (参见图1)。Ccoup提供隔直流、并将变容二极管的可变电容耦合至槽路。Ccent用来确定槽路振荡频率标称值的中心。它不是必须的,但为在不同的电感量之间调谐谐振腔提供了便利条件。电阻(R)通过调谐电压(Vtune)为变容二极管提供相反的偏置。应选择足够大的阻值,以保证加载后的槽路Q值不受影响;另外,还要保证电阻值足够小,使4kTBR噪声可以忽略。电阻的噪声电压受KVCO调制后将产生相位噪声。电容Cv是槽路内部的可变调谐元件,变容二极管的电容(Cv)是反向偏置电压的函数(变容二极管模型参见附录A)。Vtune是来自锁相环(PLL)的调谐电压。
图3在VCO模型中增加了Cstray,寄生电容和寄生电感使所有射频(RF)威廉希尔官方网站 的罪魁祸首,为估算振荡频率必须考虑寄生参数。图3用电容Cstray表示寄生元件,振荡频率可由式2表示:
L = 槽路线圈的电感值
Cint = MAX2310槽路端口的内部电容
Ccent = 用于确定中心振荡频率的槽路电容
Cstray = 电容漂移
Ccoup = 槽路电容,用来将变容二极管耦合至槽路
Cv = 变容二极管电容的净变量(包括串联电感)
Cvp = 变容二极管焊盘的电容
图3. Cstray模型
图4表示VCO模型的详细威廉希尔官方网站 ,它考虑了焊盘的等效电容,但为简便起见没有考虑串联电感。Cstray定义为:
CL = 电感的电容量
CLP = 电感焊盘的电容量
CDIFF = 平行引线的等效电容
图4. 详细的VCO模型
Rn = MAX2310槽路端口的等效负阻
Cint = MAX2310槽路端口的内部电容
LT = 电感槽路引线的串联电感
CDIFF = 平行引线的等效电容
L = 槽路线圈电感
CL = 电感等效电容
CLP = 电感焊盘等效电容
Ccent = 用于确定中心振荡频率的槽路电容
Ccoup = 槽路电容,用来将变容二极管耦合至槽路
Cvar = 变容二极管电容的变化量
Cvp = 变容二极管焊盘电容
LS = 变容二极管串联电感
R = 变容二极管反向偏置电阻的阻值
为简化分析,设计中忽略了电感LT。LT通常对高频端影响较大,为了用下面的电子表格描述LT所产生的频率偏差的数学模型,可适当增大CDIFF,减小LT以避免产生所不希望的串联谐振。这一点可通过缩短引线实现。
调谐增益
为获得最佳的闭环相位噪声特性应尽可能降低调谐增益(Kvco),环路滤波器的电阻和电阻“R” (图2)会产生宽带噪声,宽带热噪声(
)将按照Kvco调制VCO输出,用单位MHz/V表示。减小Kvco的途径有两条:一是降低压控振荡器的调谐范围;第二种方法是增大所允许的调节电压范围。要在保证足够的VCO调谐频率范围的前提下减小其调谐范围,需要选用容差极小的元器件,后面将对这一点作详细描述。为扩大电压调节范围,需采用电荷泵威廉希尔官方网站 以提供适当的电压范围,这种方式一般需要采用更高的Vcc。MAX2310允许的电压调节范围是:0.5V至Vcc-0.5V。电池供电应用中,电压调节范围受电池电压或稳压器的制约。
免调节设计的基本概念
VCO槽路设计中需对实际部件进行误差分析,为了设计一个振荡在固定频率(fosc)的VCO,必须考虑元件误差。在设计调谐增益(Kvco)时必须将这些元件容差考虑进去。元件容差越小、可能产生的调谐增益越小,闭环相位噪声就越低。考虑误差最大的情况,可以用以下三种VCO模型表示:
元件最大值(式5)
标准谐振威廉希尔官方网站 ,对应于元件标称值(式2)
元件最小值(式4)
三种VCO模型都必须覆盖所期望的标称频率,图5描述了如何将三种设计统一起来,以便提供可行的设计方案。从式1和图5可以看出:元件最小值对应于振荡频率的高频端偏移,而元件最大值对应于振荡频率的低频端偏移。
图5. 极端情况下的槽路中心频率和标称中心频率
为保证槽路的闭环相位噪声最小,需尽可能减小调谐范围。但要注意在考虑系统最大容差时仍能覆盖标准振荡频率。元件值分别达到最大和最小时,槽路的调谐范围尽量靠近所期望的振荡频率的边沿,考虑到系统容差对式2加以修正,可得最大误差时对应的振荡频率式4、式5:
= %电感(L)的容差
TCINT = %电容(CINT)的容差
TCCENT = %电容(CCENT)的容差
TCCOUP = %电容(CCOUP)的容差
TCV = %变容二极管电容(CV)的容差
式4和式5假设偏差量没有容差。
一般设计过程
步骤1
估算或测量焊点的寄生电容或其它寄生电容:用Boonton 72BD电容计对MAX2310评估板(Rev C)进行测试,测得寄生电容为:CLP = 1.13pF、CVP = 0.82pF、CDIFF = 0.036pF。
步骤2
确定电容Cint:这个参数在MAX2310/MAX2312/MAX2314/MAX2316数据资料的第5页查找到,谐振端口的1/S11随频率变化的典型工作特性给出了几个常用频点时的等效并联RC参数,附录B包含了槽路端口频率在高频端和低频端时Cint与频率的对应关系表。需要牢记的是本振频率为IF频率的两倍。
例如:
如果IF为210MHz (高频端谐振威廉希尔官方网站 ),本振工作频率应为420MHz。由附录B的表5可得Cint = 0.959pF。
步骤3
选择电感:最好从几何平均值入手,这是一个需要重复迭代的过程。
式6 |
上式中电感、电容的单位分别用nH、pF表示(1x10-9 x 1x10-12 = 1x10-21)。 如果fosc = 420MHz、L = 11.98nH,则槽路总计电容为C = 11.98pF。最初选择容差为2%、电感量为12nH的Coilcraft 0805CS-12NXGBC比较恰当。
如果选择电感具有一定的局限性时,式6.1将是一个很有用的公式。对于一个固定振荡频率fosc,LC的乘积应保持恒定。
式6.1 |
fosc = 420MHz时,LC = 143.5,按照表3采用试凑的方法可以得到:电感取18nH、容差为2%,而槽路总电容为7.9221pF。此时,图8中LC乘积为142.59,非常接近理论值143.5。由此可以看出上述关系时的实用性。为保证较低的相位噪声,选用高Q值电感,如:Coilcraft 0805CS系列,如果能够合理控制微带线的容差和Q值,也可选用微带线。
步骤4
确定锁相环(PLL)的合理范围:该参数表示VCO整个调谐电压(Vtune)的工作范围,对于MAX2310,适当范围为:0.5V至Vcc-0.5V,如果Vcc = 2.7V,则调谐电压范围为:0.5V至2.2V,电荷泵输出限定这一范围。槽路电压摆幅为1Vp-p、电压摆幅的中点为1.6V直流,即使选用较大的Ccoup,变容二极管也不会产生正偏。这是一个需要避免的情况,因为二极管将会影响槽路引脚上的交流信号,产生所不期望的杂散响应、造成闭环PLL的失锁。
步骤5
选择变容二极管,在所规定的调谐电压范围内选择容差较小的变容二极管,并保证串联电阻最小,确认变容二极管的自共振频率高于所期望的工作频率。在规定的工作电压范围内察看Cv(2.5V)/Cv(0.5V)的比率。如果选择较大的耦合电容Ccoup,最大调谐范围可利用式2计算;如果选择较小的耦合电容Ccoup,将会降低有效的频率调谐范围。选择变容二极管时需给出调谐范围的中点和端点处的容差,可以选择一个特性曲线较陡峭的变容二极管,如Alpha SMV1763-079,进行线性调节。取槽路总电容、并将其用于变容二极管的Cjo。注意,Ccoup会降低变容二极管耦合到槽路的电容。
步骤6
确定耦合电容Ccoup:Ccoup较大时,变容二极管耦合到槽路的电容较大、使调谐范围增大,但会降低槽路加载后的Q值。Ccoup较小时,会提高耦合变容二极管的Q值和加载后的Q值,但它是以减小调谐范围为代价的。通常是在保证调谐范围的前提下尽可能选择小的容量值。选择较小Ccoup的另一个好处是可以降低变容二极管两端的电压摆幅。
步骤7
确定电容Ccent。一般Ccent取2pF,考虑到电容误差也可选用稍微大一点的电容。利用Ccent调整VCO的标准频率。
步骤8
按照制作的电子表格推敲设计参数。
MAX2310在85MHz、190MHz和210MHz IF时的VCO槽路设计
下列电子表格给出了MAX2310在几个通用IF频点的设计,请牢记:LO振荡频率应为所期望的IF频率的两倍。
图6. 85MHz低频端IF槽路
表1. 85MHz低频端IF槽路设计
Light grey indicates calculated values. |
Darker grey indicates user input. |
MAX2310 Low-Band Tank Design and Tuning Range | |||||
Total Tank Capacitance vs. V tune | |||||
V tune | Total C |
Ct (Nominal) |
Ct (Low) |
Ct (High) |
|
0.5V | Ct high | 14.1766pF | 13.3590pF | 14.9459pF | |
1.375V | Ct mid | 12.8267pF | 11.7445pF | 13.7620pF | |
2.2V | Ct low | 11.4646pF | 10.3049pF | 12.4534pF | |
Tank Components | Tolerance | ||||
C coup | 18pF | 0.9pF | 5% | ||
C cent | 5.6pF | 0.1pF | 2% | ||
C stray | 0.70pF | ||||
L | 68nH | 2.00% | |||
C int | 0.902pF | 10.00% | |||
Parasitics and Pads (C stray) | |||||
Due to Q | C L | 0.1pF | |||
Ind. pad | C Lp | 1.13pF | |||
Due to || | C diff | 0.036pF | |||
Var. pad | C vp | 0.82pF | |||
Varactor Specs | |||||
Alpha SMV1255-003 | |||||
Cjo | 82pF | Varactor Tolerance | |||
Vj | 17V | 0.5V | 19.00% | ||
M | 14 | 1.5V | 29.00% | ||
Cp | 0pF | 2.5V | 35.00% | ||
Rs | 1Ω | Reactance | |||
Ls | 1.7nH | X Ls | 1.82 | ||
Freq | 170.00MHz | ||||
Nominal Varactor | X c | Net Cap | |||
Cv high | 54.64697pF | -17.1319 | 61.12581pF | ||
Cv mid | 27.60043pF | -33.92 | 29.16154pF | ||
Cv low | 14.92387pF | -62.7321 | 15.36874pF | ||
Negative Tol Varactor (Low Capacitance) | |||||
Cv high | 44.26404pF | -21.1505 | 48.42117pF | ||
Cv mid | 19.59631pF | -47.7746 | 20.37056pF | ||
Cv low | 9.700518pF | -96.5109 | 9.886531pF | ||
Positive Tol Varactor (High Capacitance) | |||||
Cv high | 65.02989pF | -14.3965 | 74.41601pF | ||
Cv mid | 35.60456pF | -26.2945 | 38.24572pF | ||
Cv low | 20.14723pF | -46.4682 | 20.96654pF | ||
Nominal LO (Nom) Range |
Low Tol IF (High) Range |
Nominal IF (Nom) Range |
High Tol IF (Low) Range |
||
F low | 162.10MHz | 84.34MHz | 81.05MHz | 78.16MHz | |
F mid | 170.42MHz | 89.95MHz | 85.21MHz | 81.45MHz | |
F high | 180.25MHz | 96.03MHz | 90.13MHz | 85.62MHz | |
BW | 18.16MHz | 11.69MHz | 9.08MHz | 7.46MHz | |
% BW | 10.65% | 12.99% | 10.65% | 9.16% | |
Nominal IF Frequency | 85.00MHz | ||||
Design Constraints | |||||
Condition for bold number | =IF | > IF | |||
Delta | 0.66 | -0.21 | 0.62 | ||
Test | pass | pass | pass | ||
Raise or lower cent freq by | -0.21 | MHz | |||
Inc or dec BW | -1.28 | MHz | |||
Cent adj for min BW | 84.98 | MHz | |||
K vco | 10.68MHz/V |
图7. 190MHz高频端IF槽路
表2. 190MHz高频端IF槽路设计
Light grey indicates calculated values. |
Darker grey indicates user input. |
MAX2310 High-Band Tank Design and Tuning Range | |||||
Total Tank Capacitance vs. V tune | |||||
V tune | Total C |
Ct (Nominal) |
Ct (Low) |
Ct (High) |
|
0.5V | Ct high | 10.4968pF | 10.0249pF | 10.9126pF | |
1.375V | Ct mid | 9.6292pF | 8.8913pF | 10.2124pF | |
2.2V | Ct low | 8.6762pF | 7.7872pF | 9.3717pF | |
Tank Components | Tolerance | ||||
C coup | 12pF | 0.1pF | 1% | ||
C cent | 3.4pF | 0.1pF | 3% | ||
C stray | 0.70pF | ||||
L | 18nH | 2.00% | |||
C int | 0.954pF | 10.00% | |||
Parasitics and Pads (C stray) | |||||
Due to Q | C L | 0.01pF | |||
Ind. pad | C Lp | 1.13pF | |||
Due to || | C diff | 0.036pF | |||
Var. pad | C vp | 0.82pF | |||
Varactor Specs | |||||
Alpha SMV1255-003 | |||||
Cjo | 82pF | Varactor Tolerance | |||
Vj | 17V | 0.5V | 19.00% | ||
M | 14 | 1.5V | 29.00% | ||
Cp | 0pF | 2.5V | 35.00% | ||
Rs | 1Ω | Reactance | |||
Ls | 1.7nH | X Ls | 4.06 | ||
Freq | 380.00MHz | ||||
Nominal Varactor | X c | Net Cap | |||
Cv high | 54.64697pF | -7.66426 | 116.1695pF | ||
Cv mid | 27.60043pF | -15.1747 | 37.67876pF | ||
Cv low | 14.92387pF | -28.0643 | 17.44727pF | ||
Negative Tol Varactor (Low Capacitance) | |||||
Cv high | 44.26404pF | -9.46205 | 77.51615pF | ||
Cv mid | 19.59631pF | -21.3728 | 24.19031pF | ||
Cv low | 9.700518pF | -43.1759 | 10.70708pF | ||
Positive Tol Varactor (High Capacitance) | |||||
Cv high | 65.02989pF | -6.44056 | 175.8588pF | ||
Cv mid | 35.60456pF | -11.7633 | 54.36221pF | ||
Cv low | 20.14723pF | -20.7884 | 25.03539pF | ||
Nominal LO (Nom) Range |
Low Tol IF (High) Range |
Nominal IF (Nom) Range |
High Tol IF (Low) Range |
||
F low | 366.15MHz | 189.23MHz | 183.07MHz | 177.78MHz | |
F mid | 382.29MHz | 200.94MHz | 191.14MHz | 183.78MHz | |
F high | 402.74MHz | 214.71MHz | 201.37MHz | 191.84MHz | |
BW | 36.59MHz | 25.47MHz | 18.29MHz | 14.06MHz | |
% BW | 9.57% | 12.68% | 9.57% | 7.65% | |
Nominal IF Frequency | 190MHz | ||||
Design Constraints | |||||
Condition for bold number | < IF | = IF | > IF | ||
Delta | 0.77 | -1.14 | 1.84 | ||
Test | pass | pass | pass | ||
Raise or lower cent freq by | -1.14 | MHz | |||
Inc or dec BW | -2.61 | MHz | |||
Cent adj for min BW | 190.54 | MHz | |||
K vco | 21.52MHz/V |
图8. 210MHz高频端IF槽路
表3. 210MHz高频端IF槽路设计
Light grey indicates calculated values. |
Darker grey indicates user input. |
MAX2310 High-Band Tank Design and Tuning Range | |||||
Total Tank Capacitance vs. V tune | |||||
V tune | Total C |
Ct (Nominal) |
Ct (Low) |
Ct (High) | |
0.5V | Ct high | 8.8304pF | 8.1465pF | 9.4877pF | |
1.35V | Ct mid | 7.9221pF | 7.0421pF | 8.6970pF | |
2.2V | Ct low | 6.9334pF | 5.9607pF | 7.7653pF | |
Tank Components | Tolerance | ||||
C coup | 12pF | 0.6pF | 5% | ||
C cent | 1.6pF | 0.1pF | 6% | ||
C stray | 0.70pF | ||||
L | 18nH | 2.00% | |||
C int | 0.959pF | 10.00% | |||
Parasitics and Pads (C stray) | |||||
Due to Q | C L | 0.1pF | |||
Ind. pad | C Lp | 1.13pF | |||
Due to || | C diff | 0.036pF | |||
Var. pad | C vp | 0.82pF | |||
Varactor Specs | |||||
Alpha SMV1255-003 | |||||
Cjo | 82pF | Varactor Tolerance | |||
Vj | 17V | 0.5V | 19.00% | ||
M | 14 | 1.5V | 29.00% | ||
Cp | 0pF | 2.5V | 35.00% | ||
Rs | 1Ω | Reactance | |||
Ls | 1.7nH | X Ls | 4.49 | ||
Freq | 420.00MHz | ||||
Nominal Varactor | X c | Net Cap | |||
Cv high | 54.64697pF | -6.93433 | 154.787pF | ||
Cv mid | 27.60043pF | -13.7295 | 40.99616pF | ||
Cv low | 14.92387pF | -25.3916 | 18.12647pF | ||
Negative Tol Varactor (Low Capacitance) | |||||
Cv high | 44.26404pF | -8.56091 | 92.99806pF | ||
Cv mid | 19.59631pF | -19.3373 | 25.51591pF | ||
Cv low | 9.700518pF | -39.0639 | 10.95908pF | ||
Positive Tol Varactor (High Capacitance) | |||||
Cv high | 65.02989pF | -5.82717 | 282.5852pF | ||
Cv mid | 35.60456pF | -10.643 | 61.54791pF | ||
Cv low | 20.14723pF | -18.8086 | 26.45795pF | ||
Nominal LO (Nom) Range |
Low Tol IF (High) Range |
Nominal IF (Nom) Range |
High Tol IF (Low) Range |
||
F low | 399.20MHz | 209.92MHz | 199.60MHz | 190.67MHz | |
F mid | 421.47MHz | 225.78MHz | 210.73MHz | 199.14MHz | |
F high | 450.52MHz | 245.41MHz | 225.26MHz | 210.75MHz | |
BW | 51.31MHz | 35.49MHz | 25.66MHz | 20.09MHz | |
% BW | 12.18% | 15.72% | 12.18% | 10.09% | |
Nominal IF Frequency | 210MHz | ||||
Design Constraints | |||||
condition for bold number | < IF | = IF | > IF | ||
Delta | 0.08 | -0.73 | 0.75 | ||
Test | pass | pass | pass | ||
Raise or lower cent freq by | -0.73 | MHz | |||
Inc or dec BW | -0.83 | MHz | |||
Cent adj for min BW | 210.34 | MHz | |||
K vco | 30.18MHz/V |
图9. 高-Q值210MHz高频端IF槽路
表4. 高-Q值210MHz高频端IF槽路设计
Light grey indicates calculated values. |
Darker grey indicates user input. |
MAX2310 High-Band Tank Design and Tuning Range | |||||
Total Tank Capacitance vs. V tune | |||||
V tune | Total C |
Ct (Nominal) |
Ct (Low) |
Ct (High) | |
0.5V | Ct high | 5.8856 | 5.5289 | 6.2425 | |
1.375V | Ct mid | 5.2487 | 4.9113 | 5.5858 | |
2.2V | Ct low | 4.8371 | 4.5156 | 5.1581 | |
Tank Components | |||||
C coup | 15pF | 0.75pF | 5% | ||
C cent | 1.6pF | 0.1pF | 6% | ||
C stray | 0.77pF | ||||
L | 27 | 2.00% | |||
C int | 0.959 | 10.00% | |||
Parasitics and Pads (C stray) | |||||
Due to Q | C L | 0.17pF | |||
Ind. pad | C Lp | 1.13pF | |||
Due to || | C diff | 0.036pF | |||
Var. pad | C vp | 0.82pF | |||
Varactor Specs | |||||
Alpha SMV1763-079 | |||||
Cjo | 8.2pF | Varactor Tolerance | |||
Vj | 15V | 0.5V | 7.50% | ||
M | 9.5 | 1.5V | 9.50% | ||
Cp | 0.67pF | 2.5V | 11.50% | ||
Rs | 0.5Ω | Reactance | |||
Ls | 0.8nH | X Ls | 2.11 | ||
Freq | 420.00MHz | ||||
Nominal Varactor | X c | Net Cap | |||
Cv high | 6.67523pF | -56.7681 | 6.933064pF | ||
Cv mid | 4.23417pF | -89.4958 | 4.336464pF | ||
Cv low | 2.904398pF | -130.471 | 2.952167pF | ||
Negative Tol Varactor (Low Capacitance) | |||||
Cv high | 6.174588pF | -61.3709 | 6.39456pF | ||
Cv mid | 3.831924pF | -98.8904 | 3.915514pF | ||
Cv low | 2.570392pF | -147.425 | 2.607736pF | ||
Positive Tol Varactor (High Capacitance) | |||||
Cv high | 7.175873pF | -52.8076 | 7.474698pF | ||
Cv mid | 4.636416pF | -81.7313 | 4.759352pF | ||
Cv low | 3.238404pF | -117.015 | 3.297904pF | ||
Nominal LO (Nom) Range |
Low Tol IF (High) Range |
Nominal IF (Nom) Range |
High Tol IF (Low) Range |
||
F low | 399.25MHz | 208.05MHz | 199.62MHz | 191.92MHz | |
F mid | 422.78MHz | 220.75MHz | 211.39MHz | 202.89MHz | |
F high | 440.40MHz | 230.22MHz | 220.20MHz | 211.14MHz | |
BW | 41.15MHz | 22.16MHz | 20.58MHz | 19.21MHz | |
% BW | 9.73% | 10.04% | 9.73% | 9.47% | |
Nominal IF Frequency | 210MHz | ||||
Design Constraints | |||||
Condition for bold number | < IF | = IF | > IF | ||
Delta | 1.95 | -1.39 | 1.14 | ||
Test | pass | pass | pass | ||
Raise or lower cent freq by | -1.39 | MHz | |||
Inc or dec BW | -3.08 | MHz | |||
Cent adj for min BW | 209.60 | MHz | |||
K vco | 24.21MHz/V |
附录A
图10. 变容二极管模型
Alpha应用笔记AN1004对变容二极管模型提供了更多信息。变容二极管电容定义为式7:
Alpha SMV1255-003 | Alpha SMV1763-079 |
Cjo = 82 pF | Cjo = 8.2 pF |
Vj =17 V | Vj =15 V |
M = 14 | M = 9.5 |
Cp = 0 | Cp = 0.67 |
Rs = 1Ω | Rs = 0.5Ω |
Ls = 1.7 nH | Ls = 0.8 nH |
变容二极管串联电感可以用反向输出的感抗表示,计算新的等效电容Cv为:
附录B
表5. MAX2310高频槽路中Cint与频率的对应关系
Frequency (MHz) | Cint (pF) | Frequency (MHz) (cont.) | Cint (pF) (cont.) |
100 | 0.708 | 360 | 0.949 |
110 | 0.759 | 370 | 0.955 |
120 | 0.800 | 380 | 0.954 |
130 | 0.809 | 390 | 0.954 |
140 | 0.839 | 400 | 0.954 |
150 | 0.822 | 410 | 0.955 |
160 | 0.860 | 420 | 0.959 |
170 | 0.869 | 430 | 0.956 |
180 | 0.880 | 440 | 0.959 |
190 | 0.905 | 450 | 0.964 |
200 | 0.917 | 460 | 0.962 |
210 | 0.920 | 470 | 0.963 |
220 | 0.926 | 480 | 0.963 |
230 | 0.924 | 490 | 0.960 |
240 | 0.928 | 500 | 0.964 |
250 | 0.935 | 510 | 0.965 |
260 | 0.932 | 520 | 0.968 |
270 | 0.931 | 530 | 0.966 |
280 | 0.933 | 540 | 0.968 |
290 | 0.927 | 550 | 0.967 |
300 | 0.930 | 560 | 0.974 |
310 | 0.933 | 570 | 0.977 |
320 | 0.943 | 580 | 0.976 |
330 | 0.944 | 590 | 0.984 |
340 | 0.945 | 600 | 0.982 |
350 | 0.956 | - | - |
图11. MAX2310高频端槽路中Cint与频率的对应关系(6阶多项式曲线拟和)
表6. MAX2310低频端槽路中Cint与频率的对应关系
Frequency (MHz) | Cint (pF) | Frequency (MHz) (cont.) | Cint (pF) (cont.) |
100 | 0.550 | 360 | 1.001 |
110 | 0.649 | 370 | 0.982 |
120 | 0.701 | 380 | 0.992 |
130 | 0.764 | 390 | 1.001 |
140 | 0.762 | 400 | 0.985 |
150 | 0.851 | 410 | 0.980 |
160 | 0.838 | 420 | 0.986 |
170 | 0.902 | 430 | 0.992 |
180 | 0.876 | 440 | 0.994 |
190 | 0.907 | 450 | 1.001 |
200 | 0.913 | 460 | 1.003 |
210 | 0.919 | 470 | 1.007 |
220 | 0.945 | 480 | 0.992 |
230 | 0.952 | 490 | 1.010 |
240 | 0.965 | 500 | 1.004 |
250 | 0.951 | 510 | 1.011 |
260 | 0.954 | 520 | 1.022 |
270 | 0.974 | 530 | 1.019 |
280 | 0.980 | 540 | 1.044 |
290 | 0.973 | 550 | 1.026 |
300 | 0.982 | 560 | 1.041 |
310 | 0.970 | 570 | 1.038 |
320 | 0.982 | 580 | 1.032 |
330 | 0.991 | 590 | 1.036 |
340 | 0.993 | 600 | 1.025 |
350 | 0.991 | - | - |
图12. MAX2310低频端槽路中Cint与频率的对应关系(6阶多项式曲线拟和)
审核编辑:郭婷
全部0条评论
快来发表一下你的评论吧 !