C语言实现状态机设计的技巧与策略

嵌入式技术

1378人已加入

描述

状态机模式是一种行为模式,通过多态实现不同状态的调转行为的确是一种很好的方法,只可惜在嵌入式环境下,有时只能写纯C代码,并且还需要考虑代码的重入和多任务请求跳转等情形,因此实现起来着实需要一番考虑。

近日在看了一个开源系统时,看到了一个状态机的实现,也学着写了一个,与大家分享。

首先,分析一下一个普通的状态机究竟要实现哪些内容。

状态机存储从开始时刻到现在的变化,并根据当前输入,决定下一个状态。这意味着,状态机要存储状态、获得输入(我们把它叫做跳转条件)、做出响应。

嵌入式编程

如上图所示,{s1, s2, s3}均为状态,箭头c1/a1表示在s1状态、输入为c1时,跳转到s2,并进行a1操作。   最下方为一组输入,状态机应做出如下反应:

嵌入式编程

当某个状态遇到不能识别的输入时,就默认进入陷阱状态,在陷阱状态中,不论遇到怎样的输入都不能跳出。   为了表达上面这个自动机,我们定义它们的状态和输入类型:

 

 

typedef int State;
typedef int Condition;


#define STATES 3 + 1
#define STATE_1 0
#define STATE_2 1
#define STATE_3 2
#define STATE_TRAP 3


#define CONDITIONS 2
#define CONDITION_1 0
#define CONDITION_2 1
在嵌入式环境中,由于存储空间比较小,因此把它们全部定义成宏。此外,为了降低执行时间的不确定性,我们使用O(1)的跳转表来模拟状态的跳转。   首先定义跳转类型:
typedef void (*ActionType)(State state, Condition condition);


typedef struct
{
    State next;
    ActionType action;
} Trasition, * pTrasition;
 

 

 

然后按照上图中的跳转关系,把三个跳转加一个陷阱跳转先定义出来:

 

 

// (s1, c1, s2, a1)
Trasition t1 = {
    STATE_2,
    action_1
};


// (s2, c2, s3, a2)
Trasition t2 = {
    STATE_3,
    action_2
};


// (s3, c1, s2, a3)
Trasition t3 = {
    STATE_2,
    action_3
};


// (s, c, trap, a1)
Trasition tt = {
    STATE_TRAP,
    action_trap
};

 

 

其中的动作,由用户自己完成,在这里仅定义一条输出语句。

 

 

void action_1(State state, Condition condition)
{
  printf("Action 1 triggered.
");
}

 

 

然后定义跳转表,即可表达上文中的跳转关系。

 

 

pTrasition transition_table[STATES][CONDITIONS] = {
/*      c1,  c2*/
/* s1 */&t1, &tt,
/* s2 */&tt, &t2,
/* s3 */&t3, &tt,
/* st */&tt, &tt,
};

 

 

最后定义状态机,如果不考虑多任务请求,那么状态机仅需要存储当前状态便行了,例如:

 

 

typedef struct
{
    State current;
} StateMachine, * pStateMachine;


State step(pStateMachine machine, Condition condition)
{
    pTrasition t = transition_table[machine->current][condition];
    (*(t->action))(machine->current, condition);
    machine->current = t->next;
return machine->current;
}
  但是考虑到当一个跳转正在进行的时候,同时又有其他任务请求跳转,则会出现数据不一致的问题。   举个例子:task1(s1, c1/a1 –> s2)和task2(s2, c2/a2 –> s3)先后执行,是可以顺利到达s3状态的,但若操作a1运行的时候,执行权限被task2抢占,则task2此时看到的当前状态还是s1,s1遇到c2就进入陷阱状态,而不会到达s3了,也就是说,状态的跳转发生了不确定,这是不能容忍的。   因此要重新设计状态机,增加一个“事务中”条件和一个用于存储输入的条件队列。修改后的代码如下:
#define E_OK        0
#define E_NO_DATA   1
#define E_OVERFLOW  2


typedef struct
{
  Condition queue[QMAX];
  int head;
  int tail;
  bool overflow;
} ConditionQueue, * pConditionQueue;




int push(ConditionQueue * queue, Condition c)
{   
  unsigned int flags;
  Irq_Save(flags);
  if ((queue->head == queue->tail + 1) || ((queue->head == 0) && (queue->tail == 0)))
  {
    queue->overflow = true;
    Irq_Restore(flags);
    return E_OVERFLOW;
  }
  else
  {
    queue->queue[queue->tail] = c;
    queue->tail = (queue->tail + 1) % QMAX;
    Irq_Restore(flags);
  }
  return E_OK;
}


int poll(ConditionQueue * queue, Condition * c)
{
    unsigned int flags;
    Irq_Save(flags);
    if (queue->head == queue->tail)
    {
        Irq_Restore(flags);
        return E_NO_DATA;
    }
    else
    {
        *c = queue->queue[queue->head];
        queue->overflow = false;
        queue->head = (queue->head + 1) % QMAX;
        Irq_Restore(flags);
    }
    return E_OK;
}


typedef struct
{
    State current;
    bool inTransaction;
    ConditionQueue queue;
} StateMachine, * pStateMachine;


static State __step(pStateMachine machine, Condition condition)
{
    State current = machine -> current;
    pTrasition t = transition_table[current][condition];
    (*(t->action))(current, condition);
    current = t->next;
    machine->current = current;
    return current;
}


State step(pStateMachine machine, Condition condition)
{
    Condition next_condition;
    int status;
    State current;
    if (machine->inTransaction)
    {
        push(&(machine->queue), condition);
        return STATE_INTRANSACTION;
    }
    else
    {
        machine->inTransaction = true;
        current = __step(machine, condition);
        status = poll(&(machine->queue), &next_condition);
        while(status == E_OK)
        {
            __step(machine, next_condition);
            status = poll(&(machine->queue), &next_condition);
        }
        machine->inTransaction = false;
        return current;
    }
}


void initialize(pStateMachine machine, State s)
{
    machine->current = s;
    machine->inTransaction = false;
    machine->queue.head = 0;
    machine->queue.tail = 0;
    machine->queue.overflow = false;
}
 

 

 

审核编辑:黄飞

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分