针对卷积神经网络(CNN)声学建模参数在低资源训练数据条件下的语音识别任务中存在训练不充分的问题,提出一种利用多流特征提升低资源卷积神经网络声学模型性能的方法。首先,为了在低资源声学建模过程中充分利用有限训练数据中更多数量的声学特征,先对训练数据提取几类不同的特征;其次,对每一类类特征分别构建卷积子网络,形成一个并行结构,使得多特征数据在概率分布上得以规整;然后通过在并行卷积子网络之上加入全连接层进行融合,从而得到一种新的卷积神经网络声学模型;最后,基于该声学模型搭建低资源语音识别系统。实验结果表明,并行卷积层子网络可以将不同特征空间规整得更为相似,且该方法相对传统多特征拼接方法和单特征CNN建模方法分别提升了3. 27%和2.08%的识别率;当引入多语言训练时,该方法依然适用,且识别率分别相对提升了5. 73%和4.57%。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !