点互信息(PMI)边界检测算法能准确检测图像中的边界,但算法效率受制于采样点的提取。针对采样过程中存在随机性和信息冗余的问题,提出一种利用超像素分割提供的中层结构信息来指导点对选取的方法。首先使用超像素算法对图像进行初始分割,将图像划分成大小形状近似的像素块;然后选取落在相邻超像素中的像素点对,从而使样本点的选取更有目的性,在采样点数目较少时,保证样本点仍能有效完整地获取图像信息。实验通过与原始的PMI边界检测算法在伯克利分割数据库(BSDS)上进行比对验证得出,基于超像素的PMI边界检测算法在采样点对为3500时,平均精准度(AP)达到0.7917,而原始算法则需要6000个同样环境下的采样点对。基于超像素的PMI边界检测算法在保证了检测精度的同时减少了所需的采样点数目,从而能有效提高算法的实时性。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !