针对图像在平移、旋转或局部形变等复杂情况下的识别问题,提出一种基于非监督预训练和多尺度分块的卷积神经网络(CNN)目标识别算法。算法首先利用不合标签的图像训练一个稀疏自动编码器,得到符合数据集特性、有较好初始值的滤波器集合。为了增强鲁棒性,同时减小下采样对特征提取的影响,提出一种多通路结构的卷积神经网络,对输入图像进行多尺度分块形成多个通路,每个通路与相应尺寸的滤波器卷积,不同通路的特征经过局部对比度标准化和下采样后在全连接层进行融合,从而形成最终用于图像分类的特征,将特征输入分类器完成图像目标识别。仿真实验中,所提算法对STL-IO数据集和遥感飞机图像的识别率较传统的CNN均有提高,并对图像各种形变具有较好的鲁棒性。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !