针对求解武器一目标分配(weapon-target assignment,WTA)问题的传统算法容易早熟和收敛较慢的缺点,提出一种直觉模糊遗传算法,采用模拟退火的Meta-Lamarckian学习策略和自适应变异,提高了求解WTA问题的效益和速度。首先考虑了WTA问题的各种约束条件,以剩余目标威胁最小和攻击伤害值最大为目标,建立了数学模型,定义了目标函数和约束函数的隶属度和非隶属度函数,通过“最小一最大”算子构建了直觉模糊WTA问题模型,并设计了模拟退火的Meta-Lamarckian学习策略和自适应变异,增强算法的局部寻优能力和后期收敛速度。通过算例仿真并与CA、PSO等算法比较分析,验证了该方法的有效性。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !