STM32
登录
直播中
久醉不醒
9年用户
1055经验值
擅长:可编程逻辑 电源/新能源
私信
关注
[问答]
怎样去设计一种基于STM32的DDS信号发生器呢
开启该帖子的消息推送
STM32
DDS
信号发生器
STM32
内部的12位ADC是怎样输出各个电压的?
怎样去设计一种基于STM32的DDS信号发生器呢?
回帖
(1)
孙婷
2021-10-19 11:53:13
DDS信号发生器采用直接数字频率合成(Direct Digital Synthesis,简称DDS)技术,把信号发生器的频率稳定度、准确度提高到与基准频率相同的水平,并且可以在很宽的频率范围内进行精细的频率调节。采用这种方法设计的信号源可工作于调制状态,可对输出电平进行调节,也可输出各种波形。
一个完整周期的函数波形被存储在上面所示的存储器查找表中。相位累加器跟踪输出函数的电流相位。为了输出一个非常低的频率,采样样本之间的差相位(Δ)将非常小。例如,一个很慢的正弦波可能将有1度的Δ相位。则波形的0号采样样本采得0度时刻的正弦波的幅度,而波形的1号采样将采得1度时刻的正弦波的幅度,依次类推。经过360次采样后,将输出正弦曲线的全部360度,或者确切地说是一个周期。一个较快的正弦波可能会有10度的Δ相位。于是,36次采样就会输出正弦波的一个周期。如果采样率保持恒定,上述较慢的正弦波的频率将比较快的正弦波慢10倍。 进一步说,一个恒定的Δ相位必将导致一个恒定正弦波频率的输出。但是,DDS技术允许通过一个频率表迅速地改变信号的Δ相位。函数发生器能够指定一个频率表,该表包括由波形频率和持续时间信息组成的各个段。函数发生器按顺序产生每个定义的频率段。通过生成一个频率表,可以构建复杂的频率扫描信号和频率跳变信号。DDS允许函数发生器的相位从一级到另一级连续变化。 矢量信号发生器提供高灵活度和强大的解决方案,可用于科学研究,通信,消费电子,宇航/国防,半导体测试以及一些新兴领域,如软件无线电,无线电频率识别( RFID),以及无线传感网络等。 有些公司还提供许多其他利用DAC来产生模拟信号的模拟输出产品。模拟输出板的基本架构是,将一个小型的FIFO存储器连接到一个DAC上。绝大部分的模拟输出板被用来产生静态电压,而且许多可以被用来产生低频波形。
STM32内部带有12位ADC,通过查表的方式输出各个电压
#include “sign.h”
u16 SineWave_Value[256];
/********正弦波输出表***********/
//cycle :波形表的位数 (0~256)
//Um :输出电压的峰值(0~1.5)
/*******************************/
void SineWave_Data( u16 cycle ,u16 *D,float Um)
{
u16 i;
for( i=0;i《cycle;i++)
{
D[i]=(u16)((Um*sin(( 1.0*i/(cycle-1))*2*PI)+Um)*4095/3.3);
}
}
/****************初始化引脚******************/
void SineWave_GPIO_Config(void)
{
GPIO_InitTypeDef GPIO_InitStructure;
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA|RCC_APB2Periph_GPIOD, ENABLE); //开时钟
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; //推挽输出模式
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; //输出速率
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4 ; //选择引脚
GPIO_SetBits(GPIOA,GPIO_Pin_4) ; //拉高输出
GPIO_Init(GPIOA, &GPIO_InitStructure); //初始化
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU; //推挽输出模式
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_2 | GPIO_Pin_3; //选择引脚
GPIO_Init(GPIOD, &GPIO_InitStructure); //初始化
}
/******************DAC初始化ˉ*************************/
void SineWave_DAC_Config( void)
{
DAC_InitTypeDef DAC_InitStructure;
RCC_APB1PeriphClockCmd(RCC_APB1Periph_DAC, ENABLE);//开DAC时钟
/**************DAC结构初始化*******************/
DAC_StructInit(&DAC_InitStructure);
DAC_InitStructure.DAC_WaveGeneration = DAC_WaveGeneration_None;//不产生波形
DAC_InitStructure.DAC_OutputBuffer = DAC_OutputBuffer_Enable; //不使能输出缓存
DAC_InitStructure.DAC_Trigger = DAC_Trigger_None;//DAC触发为定时器2触发
DAC_Init(DAC_Channel_1, &DAC_InitStructure);//初始化
DAC_Cmd(DAC_Channel_1, ENABLE); //使能DAC的通道1
//DAC_DMACmd(DAC_Channel_1, ENABLE); //使能DAC通道1的DMA
}
/*********定时器初始化************/
void SineWave_TIM_Config(u32 Wave1_Fre)
{
TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE);//开时钟
TIM_TimeBaseStructInit(&TIM_TimeBaseStructure);
TIM_TimeBaseStructure.TIM_Prescaler = 0x0; //不预分频
TIM_TimeBaseStructure.TIM_ClockDivision = 0x0; //不分频《br》 TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;//向上计数
TIM_TimeBaseStructure.TIM_Period = Wave1_Fre;//设置输出频率
TIM_TimeBaseInit(TIM2, &TIM_TimeBaseStructure);
TIM_SelectOutputTrigger(TIM2, TIM_TRGOSource_Update);//设置TIME输出触发为更新模式
}
/*********DMA配置***********/
void SineWave_DMA_Config(void)
{
DMA_InitTypeDef DMA_InitStructure;
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA2, ENABLE);//开启DMA2时钟
DMA_StructInit( &DMA_InitStructure); //DMA结构体初始化
DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralDST;//从寄存器读数据
DMA_InitStructure.DMA_BufferSize = 256;//寄存器大小
DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;//外设地址不递增
DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable; //内存地址递增
DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord;//宽度为半字
DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord;//宽度为半字
DMA_InitStructure.DMA_Priority = DMA_Priority_VeryHigh;//优先级非常高
DMA_InitStructure.DMA_M2M = DMA_M2M_Disable;//关闭内存到内存模式
DMA_InitStructure.DMA_Mode = DMA_Mode_Circular;//循环发送模式
DMA_InitStructure.DMA_PeripheralBaseAddr = DAC_DHR12R1;//外设地址为DAC通道1的地址
DMA_InitStructure.DMA_MemoryBaseAddr = (uint32_t)SineWave_Value;//波形数据表内存地址
DMA_Init(DMA2_Channel3, &DMA_InitStructure);//初始化
DMA_Cmd(DMA2_Channel3, ENABLE); //使能DMA通道3
}
/**********正弦波初始化**********************/
//Wave1_Fre: 频率值(0~60 000)Hz
//Um : 电压峰值(0.0~1.5)V
/*******************************************/
void SineWave_Init(u16 Wave1_Fre,float Um)
{
u32 f1;
f1=(u32)(8000000/sizeof(SineWave_Value)*2/Wave1_Fre);//计算频率
SineWave_Data(256,SineWave_Value,Um); //生成输出正弦波的波形表
SineWave_GPIO_Config(); //初始化io
//SineWave_TIM_Config(f1); //初始化定时器
SineWave_DAC_Config(); //配置DAC
//SineWave_DMA_Config(); //配置DMA
//TIM_Cmd(TIM2, ENABLE); //开启定时器
}
DDS信号发生器采用直接数字频率合成(Direct Digital Synthesis,简称DDS)技术,把信号发生器的频率稳定度、准确度提高到与基准频率相同的水平,并且可以在很宽的频率范围内进行精细的频率调节。采用这种方法设计的信号源可工作于调制状态,可对输出电平进行调节,也可输出各种波形。
一个完整周期的函数波形被存储在上面所示的存储器查找表中。相位累加器跟踪输出函数的电流相位。为了输出一个非常低的频率,采样样本之间的差相位(Δ)将非常小。例如,一个很慢的正弦波可能将有1度的Δ相位。则波形的0号采样样本采得0度时刻的正弦波的幅度,而波形的1号采样将采得1度时刻的正弦波的幅度,依次类推。经过360次采样后,将输出正弦曲线的全部360度,或者确切地说是一个周期。一个较快的正弦波可能会有10度的Δ相位。于是,36次采样就会输出正弦波的一个周期。如果采样率保持恒定,上述较慢的正弦波的频率将比较快的正弦波慢10倍。 进一步说,一个恒定的Δ相位必将导致一个恒定正弦波频率的输出。但是,DDS技术允许通过一个频率表迅速地改变信号的Δ相位。函数发生器能够指定一个频率表,该表包括由波形频率和持续时间信息组成的各个段。函数发生器按顺序产生每个定义的频率段。通过生成一个频率表,可以构建复杂的频率扫描信号和频率跳变信号。DDS允许函数发生器的相位从一级到另一级连续变化。 矢量信号发生器提供高灵活度和强大的解决方案,可用于科学研究,通信,消费电子,宇航/国防,半导体测试以及一些新兴领域,如软件无线电,无线电频率识别( RFID),以及无线传感网络等。 有些公司还提供许多其他利用DAC来产生模拟信号的模拟输出产品。模拟输出板的基本架构是,将一个小型的FIFO存储器连接到一个DAC上。绝大部分的模拟输出板被用来产生静态电压,而且许多可以被用来产生低频波形。
STM32内部带有12位ADC,通过查表的方式输出各个电压
#include “sign.h”
u16 SineWave_Value[256];
/********正弦波输出表***********/
//cycle :波形表的位数 (0~256)
//Um :输出电压的峰值(0~1.5)
/*******************************/
void SineWave_Data( u16 cycle ,u16 *D,float Um)
{
u16 i;
for( i=0;i《cycle;i++)
{
D[i]=(u16)((Um*sin(( 1.0*i/(cycle-1))*2*PI)+Um)*4095/3.3);
}
}
/****************初始化引脚******************/
void SineWave_GPIO_Config(void)
{
GPIO_InitTypeDef GPIO_InitStructure;
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA|RCC_APB2Periph_GPIOD, ENABLE); //开时钟
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; //推挽输出模式
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; //输出速率
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4 ; //选择引脚
GPIO_SetBits(GPIOA,GPIO_Pin_4) ; //拉高输出
GPIO_Init(GPIOA, &GPIO_InitStructure); //初始化
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU; //推挽输出模式
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_2 | GPIO_Pin_3; //选择引脚
GPIO_Init(GPIOD, &GPIO_InitStructure); //初始化
}
/******************DAC初始化ˉ*************************/
void SineWave_DAC_Config( void)
{
DAC_InitTypeDef DAC_InitStructure;
RCC_APB1PeriphClockCmd(RCC_APB1Periph_DAC, ENABLE);//开DAC时钟
/**************DAC结构初始化*******************/
DAC_StructInit(&DAC_InitStructure);
DAC_InitStructure.DAC_WaveGeneration = DAC_WaveGeneration_None;//不产生波形
DAC_InitStructure.DAC_OutputBuffer = DAC_OutputBuffer_Enable; //不使能输出缓存
DAC_InitStructure.DAC_Trigger = DAC_Trigger_None;//DAC触发为定时器2触发
DAC_Init(DAC_Channel_1, &DAC_InitStructure);//初始化
DAC_Cmd(DAC_Channel_1, ENABLE); //使能DAC的通道1
//DAC_DMACmd(DAC_Channel_1, ENABLE); //使能DAC通道1的DMA
}
/*********定时器初始化************/
void SineWave_TIM_Config(u32 Wave1_Fre)
{
TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE);//开时钟
TIM_TimeBaseStructInit(&TIM_TimeBaseStructure);
TIM_TimeBaseStructure.TIM_Prescaler = 0x0; //不预分频
TIM_TimeBaseStructure.TIM_ClockDivision = 0x0; //不分频《br》 TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;//向上计数
TIM_TimeBaseStructure.TIM_Period = Wave1_Fre;//设置输出频率
TIM_TimeBaseInit(TIM2, &TIM_TimeBaseStructure);
TIM_SelectOutputTrigger(TIM2, TIM_TRGOSource_Update);//设置TIME输出触发为更新模式
}
/*********DMA配置***********/
void SineWave_DMA_Config(void)
{
DMA_InitTypeDef DMA_InitStructure;
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA2, ENABLE);//开启DMA2时钟
DMA_StructInit( &DMA_InitStructure); //DMA结构体初始化
DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralDST;//从寄存器读数据
DMA_InitStructure.DMA_BufferSize = 256;//寄存器大小
DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;//外设地址不递增
DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable; //内存地址递增
DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord;//宽度为半字
DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord;//宽度为半字
DMA_InitStructure.DMA_Priority = DMA_Priority_VeryHigh;//优先级非常高
DMA_InitStructure.DMA_M2M = DMA_M2M_Disable;//关闭内存到内存模式
DMA_InitStructure.DMA_Mode = DMA_Mode_Circular;//循环发送模式
DMA_InitStructure.DMA_PeripheralBaseAddr = DAC_DHR12R1;//外设地址为DAC通道1的地址
DMA_InitStructure.DMA_MemoryBaseAddr = (uint32_t)SineWave_Value;//波形数据表内存地址
DMA_Init(DMA2_Channel3, &DMA_InitStructure);//初始化
DMA_Cmd(DMA2_Channel3, ENABLE); //使能DMA通道3
}
/**********正弦波初始化**********************/
//Wave1_Fre: 频率值(0~60 000)Hz
//Um : 电压峰值(0.0~1.5)V
/*******************************************/
void SineWave_Init(u16 Wave1_Fre,float Um)
{
u32 f1;
f1=(u32)(8000000/sizeof(SineWave_Value)*2/Wave1_Fre);//计算频率
SineWave_Data(256,SineWave_Value,Um); //生成输出正弦波的波形表
SineWave_GPIO_Config(); //初始化io
//SineWave_TIM_Config(f1); //初始化定时器
SineWave_DAC_Config(); //配置DAC
//SineWave_DMA_Config(); //配置DMA
//TIM_Cmd(TIM2, ENABLE); //开启定时器
}
举报
更多回帖
rotate(-90deg);
回复
相关问答
STM32
DDS
信号发生器
怎样
去
设计
一种
基于51单片机的低频
信号
发生器
呢
2021-10-18
1232
怎样
去
设计
一种
基于FPGA的正弦
信号
发生器
2021-09-28
1050
请问
怎样
去
设计
一种
高斯白噪声
发生器
?
2021-04-30
1514
请问
怎样
去
设计
一种
短波阵列
信号
发生器
?
2021-04-23
871
如何设计
一种
基于
DDS
器件AD9951的射频正弦波
信号
发生器
?
2021-04-07
1026
怎么实现基于FPGA+
DDS
的正弦
信号
发生器
的设计?
2021-05-11
1387
怎样
去
编写
一种
基于DSP的正弦波
信号
发生器
源程序
呢
2021-11-19
1430
如何使用
STM32
单片机
去
制作
一种
低频
信号
发生器
呢
2021-11-05
1297
怎么设计基于FPGA和虚拟仪器的
DDS
信号
发生器
?
2019-09-29
1586
如何
去
实现
一种
基于
stm32
的波形
发生器
呢
2021-11-17
752
发帖
登录/注册
20万+
工程师都在用,
免费
PCB检查工具
无需安装、支持浏览器和手机在线查看、实时共享
查看
点击登录
登录更多精彩功能!
英国威廉希尔公司网站
william hill官网 版块
小组
免费开发板试用
ebook
直播
搜索
登录
×
20
完善资料,
赚取积分