0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

利用机器学习发现新型冠状病毒的潜在中和抗体

倩倩 来源:非编码RNA 2020-04-15 11:18 次阅读

病毒是一种狡猾的小病原体,在我们的免疫系统知道如何摧毁它们之前,就能对人体造成严重破坏。有了机器学习工具,我们就可以通过加速抗体的形成来战胜它们。

在卡耐基梅隆大学机械工程系的实验室里,Amir Barati Farimani开发了能够基于数据推断、学习和预测机械系统的算法。他研究了一系列的课题,从流体力学和传热到材料发现和机器人技术,他还研究了人类健康和生物工程的挑战。Barati Farimani是卡耐基梅隆大学机械工程助理教授,他在那里指导机械和人工智能实验室。

随着COVID-19大流行的爆发,Barati Farimani很快将他的实验室的重点转移到SARS-CoV-2研究上。此前,他曾使用机器学习工具来研究埃博拉病毒和艾滋病病毒的抗体,现在他想进一步研究这种新型冠状病毒。

目前,科学家们使用基于计算和物理的模型来筛选成千上万的抗体序列。这些模型既昂贵又耗时,还需要我们尚未掌握的关于SARS-CoV-2的信息

“这就是机器学习可以完成繁重任务的地方,”Barati Farimani说。“它不仅能比目前的筛选方法更快地‘学习’复杂的抗原-抗体相互作用,还能在反应时间上超过人类的免疫系统。”

研究小组将现有的其他传染性病毒的生物数据整合到他们命名为VirusNet的数据集中。然后,他们用这组数据来训练机器学习模型,选择性能最好的模型来筛选成千上万的潜在抗体候选。

该模型最终鉴定出8种稳定的抗体,它们在中和SARS-CoV-2方面非常有效。这些发现被发布在生物学预印本服务器bioRxiv的初步报告中,以便其他研究人员能够尽快获得这些信息。

“我们的目标是拯救生命,”Barati Farimani说。“现在分享我们的初步发现,将有助于世界各地的其他科学家抗击这种病毒的工作。我们有着共同的目标。”

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 人工智能
    +关注

    关注

    1791

    文章

    47279

    浏览量

    238488
  • 机器学习
    +关注

    关注

    66

    文章

    8418

    浏览量

    132633
  • 数据集
    +关注

    关注

    4

    文章

    1208

    浏览量

    24701
收藏 人收藏

    评论

    相关推荐

    如何选择云原生机器学习平台

    当今,云原生机器学习平台因其弹性扩展、高效部署、低成本运营等优势,逐渐成为企业构建和部署机器学习应用的首选。然而,市场上的云原生机器
    的头像 发表于 12-25 11:54 95次阅读

    什么是机器学习?通过机器学习方法能解决哪些问题?

    来源:Master编程树“机器学习”最初的研究动机是让计算机系统具有人的学习能力以便实现人工智能。因为没有学习能力的系统很难被认为是具有智能的。目前被广泛采用的
    的头像 发表于 11-16 01:07 404次阅读
    什么是<b class='flag-5'>机器</b><b class='flag-5'>学习</b>?通过<b class='flag-5'>机器</b><b class='flag-5'>学习</b>方法能解决哪些问题?

    NPU与机器学习算法的关系

    在人工智能领域,机器学习算法是实现智能系统的核心。随着数据量的激增和算法复杂度的提升,对计算资源的需求也在不断增长。NPU作为一种专门为深度学习机器
    的头像 发表于 11-15 09:19 454次阅读

    利用新型ePWM特性进行多相控制

    电子发烧友网站提供《利用新型ePWM特性进行多相控制.pdf》资料免费下载
    发表于 09-24 11:25 0次下载
    <b class='flag-5'>利用</b><b class='flag-5'>新型</b>ePWM特性进行多相控制

    【「时间序列与机器学习」阅读体验】时间序列的信息提取

    个重要环节,目标是从给定的时间序列数据中提取出有用的信息和特征,以支持后续的分析和预测任务。 特征工程(Feature Engineering)是将数据转换为更好地表示潜在问题的特征,从而提高机器学习
    发表于 08-17 21:12

    【《时间序列与机器学习》阅读体验】+ 时间序列的信息提取

    本人有些机器学习的基础,理解起来一点也不轻松,加油。 作者首先说明了时间序列的信息提取是时间序列分析的一个重要环节,目标是从给定的时间序列数据中提取出有用的信息和特征,以支持后续的分析和预测任务,可以利用
    发表于 08-14 18:00

    【「时间序列与机器学习」阅读体验】+ 简单建议

    这本书以其系统性的框架和深入浅出的讲解,为读者绘制了一幅时间序列分析与机器学习融合应用的宏伟蓝图。作者不仅扎实地构建了时间序列分析的基础知识,更巧妙地展示了机器学习如何在这一领域发挥巨
    发表于 08-12 11:21

    【《时间序列与机器学习》阅读体验】+ 了解时间序列

    。 可以探索现象发展变化的规律,对某些社会经济现象进行预测。 利用时间序列可以在不同地区或国家之间进行对比分析,这也是统计分析的重要方法之一。 而《时间序列与机器学习》一书的后几章分别介绍了时间序列在广告
    发表于 08-11 17:55

    机器学习算法原理详解

    机器学习作为人工智能的一个重要分支,其目标是通过让计算机自动从数据中学习并改进其性能,而无需进行明确的编程。本文将深入解读几种常见的机器学习
    的头像 发表于 07-02 11:25 1039次阅读

    深度学习与传统机器学习的对比

    在人工智能的浪潮中,机器学习和深度学习无疑是两大核心驱动力。它们各自以其独特的方式推动着技术的进步,为众多领域带来了革命性的变化。然而,尽管它们都属于机器
    的头像 发表于 07-01 11:40 1377次阅读

    利用Mwifi自动组网后,如何获得某个节点的所有潜在父节点的rssi?

    利用 Mwifi自动组网后,如何获得某个节点的所有潜在父节点的rssi
    发表于 06-28 11:25

    请问PSoC™ Creator IDE可以支持IMAGIMOB机器学习吗?

    。 我发现IMAGIMOB 是一个很好的解决方案来满足我的需求,但现在的问题是, PSoC™ Creator 不支持 IMAGIMOB! PSoC™ Creator 可以支持机器学习或 IMAGIMOB 吗?
    发表于 05-20 08:06

    机器学习入门:基本概念介绍

    机器学习(GraphMachineLearning,简称GraphML)是机器学习的一个分支,专注于利用图形结构的数据。在图形结构中,数据
    的头像 发表于 05-16 08:27 504次阅读
    图<b class='flag-5'>机器</b><b class='flag-5'>学习</b>入门:基本概念介绍

    《魔兽世界》未采用生成式AI,利用机器学习实现护甲套装配置

    同时,海特还谈及了团队利用机器学习进行实验的情况。得益于此,《魔兽世界》的 24 个种族已配备新护甲套装。“此前,我们的美术师需为每个角色设计单独护甲,再依身高、体态、犄角乃至尾巴等特点进行修改。这显然并不轻松。”海特如是说。
    的头像 发表于 04-03 11:38 310次阅读

    复合机器人能给3C电子行业带来哪些潜在益处

    复合机器人能给3C电子行业带来哪些潜在益处
    的头像 发表于 03-19 16:42 778次阅读
    复合<b class='flag-5'>机器</b>人能给3C电子行业带来哪些<b class='flag-5'>潜在</b>益处