0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

全新等离子体光子芯片:加快光纤网络中的数据传输速度

如意 来源:环球创新智慧 作者:环球创新智慧 2020-07-05 11:51 次阅读

导读

据瑞士苏黎世联邦理工学院(ETH)官网近日报道,该校研究人员开发出一款超高速芯片,可以加快光纤网络中的数据传输速度。

背景

像瑞士苏黎世这样的城市中,光纤网络已经广泛用于实现高速互联网、数字电话、电视以及基于网络的视频流或者音频流服务。但是,到这个十年末,在高速数据传输方面,即使光通信网络也可能会达到其极限。

这是因为流媒体、存储与计算等在线服务的需求不断增长,以及人工智能5G网络的出现。当今的光网络实现了每秒吉比特(10^9比特)范围内的数据传输速率。每个通道和波长的限制为每秒100吉比特左右。然而,未来数据传输速率的需求将达到每秒太比特(10^12比特)的范围。

创新

近日,瑞士苏黎世联邦理工学院(ETH)的研究人员开发出一款超高速芯片,可以加快光纤网络中的数据传输速度。该芯片同时结合了多项创新技术,鉴于人们对于流媒体和在线服务的需求不断增长,它代表着一项重大进展。相关论文发表在《自然·电子学(Nature Electronics)》杂志上。

高速紧凑的新型芯片首次将最快的电子器件与光基元件集成到单个组件中。(图片来源:苏黎世联邦理工学院/《自然·电子学》)

苏黎世联邦理工学院实现了科学家们约二十年来一直在追求的目标。在作为欧盟地平线2020计划研究项目一部分的实验室工作中,他们制造出了这款芯片。高速电子信号在芯片上可被直接转换成超高速光信号,信号质量几乎没有损失。这代表着在使用光传输数据的光通信基础设施(例如光纤网络)的效率方面取得了重大突破。

技术

苏黎世联邦理工学院光子与通信系教授于尔格·鲁特霍尔德(Juerg Leuthold)表示:“不断增长的需求呼唤新的解决方案。这个范式转移的关键在于,将电子元件与光子元件结合到单颗芯片上。”光子学(光粒子科学)领域研究用于信息传输、存储和处理的光学技术。

苏黎世联邦理工学院研究人员现在已经精确地实现了这一组合。在与来自德国、美国、以色列和希腊的伙伴们合作开展的实验中,他们首次在同一颗芯片上将电子元件与光基元件结合到一起。从技术角度来看,这是一个巨大的进步,因为目前这些元件必须在不同的芯片上制造,然后通过线连接到一起。

这项研究的领导作者、鲁特霍尔德课题组的博士后研究员乌利·科赫(Ueli Koch)解释道,这种方法会带来后果:从一方面说,分别制造电子芯片和光子芯片是很昂贵的。从另一方面说,在将电子信号转化光信号的过程中,性能会受到影响,从而限制了光纤光学通信网络中的数据传输速度。

科赫表示:“如果你用两个单独的芯片将电子信号转化为光信号,你的信号质量会大大受损。”因此,他的方案是从调制器开始。调制器是一种位于芯片上的元件,通过将电信号转化为光波生成给定强度的光。调制器的尺寸必须尽可能小,以避免转化过程中的质量和强度的损耗,并且以更快的速度传输光(或者说是数据)。

将电子和光子元件紧紧地放在彼此的顶部,并通过“片上通孔”的方式将它们直接连接到芯片上,可以实现这种紧凑性。电子器件与光子器件的这种层叠,缩短了传输距离并减少了信号质量方面的损耗。因为电子器件与光子器件安装在单个基底上,所以研究人员将这个方案描述为“单片共集成(monolithic co-integration)”。

过去二十年来,单片方案有过失败,因为光子芯片比电子芯片要大得多。于尔格·鲁特霍尔德说,这妨碍了它们集成到单颗芯片上。光子元件的尺寸,使之无法与现今电子产品中流行的互补金属氧化物半导体(CMOS)技术结合到一起。

鲁特霍尔德表示:“现在,我们已经用等离子体光子器件取代普通的光子器件,解决了光子器件与电子器件之间的尺寸差异问题。”十年来,科学家们一直在预测,等离子体光子学(Plasmonics),作为光子学的一个分支,将为超高速芯片奠定基础。等离子体光子学可以让光波挤进比光波长小得多的结构中。

由于等离子体光子芯片比电子芯片要小,所以我们现在实际上可以制造出包含光子层和电子层的更紧凑的单块芯片。为了将电信号转化为更快的光信号,光子层(上图中红色部分)包含了一个等离子体光子强度调制器,它是基于引导光达到更高速度的金属结构。

这也带来了电子层(上图中蓝色部分)中的速度提升。在称为“4:1 多路复用”的过程中,四个低速输入信号被捆绑和放大,以便它们在一起形成高速电信号。科赫表示:“然后,它会被转化成一个高速光信号。通过这种方式,我们首次在单块芯片上以超过每秒100吉比特的速度传输数据。”

为了达到破纪录的速度,研究人员不仅将等离子体光子技术与经典的 CMOS 技术结合起来,而且还结合了更高速的双极互补金属氧化物半导体(BiCMOS)技术。他们也利用了来自华盛顿大学的温度稳定的新型电光学材料,并借鉴了地平线2020项目 PLASMOfab 和 plaCMOS 的见解。据鲁特霍尔德称,他们的实验表明,这些技术可以结合起来创造最快的小型芯片:“我们坚信,这个解决方案也将为未来光学通信网络中更快的数据传输铺平道路。”

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 半导体
    +关注

    关注

    334

    文章

    27363

    浏览量

    218709
  • 离子
    +关注

    关注

    0

    文章

    100

    浏览量

    17095
  • 光子芯片
    +关注

    关注

    3

    文章

    99

    浏览量

    24421
收藏 人收藏

    评论

    相关推荐

    等离子体电光调制器研究与应用文献

    昊量光电新推出基于表面等离子体激元(SPP)和硅光子集成技术的高速等离子体电光调制器,高带宽可达145GHz,可被广泛用于通信,量子,测试测量等领域,不仅提供带宽70GHz-145GHz的环形谐振
    的头像 发表于 12-20 14:39 162次阅读

    信噪比对数据传输速度的影响

    信噪比对数据传输速度有着显著的影响。以下是对这一影响的分析: 一、信噪比的定义与重要性 信噪比(SNR)是信号功率与噪声功率的比值,通常以分贝(dB)为单位表示。它是衡量信号质量的重要参数,直接影响
    的头像 发表于 12-10 14:38 362次阅读

    等离子体发射器的工作原理

    在探索宇宙的征途中,人类一直在寻找更高效、更环保的推进技术。 等离子体基础 等离子体,被称为物质的第四态,是一种由离子、电子和中性粒子组成的高温、高电导率的气体。在自然界
    的头像 发表于 11-29 10:11 267次阅读

    等离子体技术在航天的作用

    一、等离子体推进技术 等离子体推进技术是利用等离子体的高速运动来产生推力的一种航天推进方式。与传统化学推进相比,等离子体推进具有更高的比冲,这意味着在消耗相同质量的推进剂时,
    的头像 发表于 11-29 10:10 399次阅读

    等离子体电导率的影响因素

    等离子体,作为物质的第四态,广泛存在于自然界和工业应用。从太阳风到荧光灯,等离子体的身影无处不在。等离子体的电导率是衡量其导电性能的关键参数,它决定了
    的头像 发表于 11-29 10:08 368次阅读

    等离子体的定义和特征

    的电导性和磁场响应性。 等离子体的特征 电离状态 :等离子体的原子或分子部分或全部失去电子,形成带电粒子。 电导性 :由于存在自由电子和离子等离
    的头像 发表于 11-29 10:06 418次阅读

    等离子体在医疗领域的应用

    等离子体的特性 等离子体是一种高度电离的气体,它包含大量的自由电子和离子。这种物质状态具有高能量密度、高反应活性和良好的导电性。等离子体的温度可以从室温到数百万度不等,这使得它在医疗
    的头像 发表于 11-29 10:04 215次阅读

    等离子体清洗的原理与方法

    等离子体清洗的原理 等离子体是物质的第四态,由离子、电子、自由基和中性粒子组成。等离子体清洗的原理主要基于以下几点: 高活性粒子 :等离子体
    的头像 发表于 11-29 10:03 219次阅读

    为什么干法刻蚀又叫低温等离子体刻蚀

    等离子体广泛存在于自然界,如闪电,太阳表面都会有大量的等离子体产生,因为等离子体的实质是气体的电离。自然界的等离子体的核心温度可以达到1
    的头像 发表于 11-16 12:53 241次阅读
    为什么干法刻蚀又叫低温<b class='flag-5'>等离子体</b>刻蚀

    什么是等离子体

    等离子体,英文名称plasma,是物质的第四态,其他三态有固态,液态,气态。在半导体领域一般是气体被电离后的状态,又被称为‘电浆’,具有带电性和流动性的特点。
    的头像 发表于 11-05 09:34 212次阅读
    什么是<b class='flag-5'>等离子体</b>

    网络数据传输速率的单位是什么

    网络数据传输速率的单位是 bps(bit per second) ,即比特每秒,也可以表示为b/s或bit/s。它表示的是每秒钟传输的二进制数的位数。比特(bit)是计算机
    的头像 发表于 10-12 10:20 1243次阅读

    什么是电感耦合等离子体,电感耦合等离子体的发明历史

    电感耦合等离子体(Inductively Coupled Plasma, ICP)是一种常用的等离子体源,广泛应用于质谱分析、光谱分析、表面处理等领域。ICP等离子体通过感应耦合方式将射频能量传递给气体,激发成
    的头像 发表于 09-14 17:34 781次阅读

    电感耦合等离子体的基本原理及特性

    在电感耦合等离子体系统,射频电源常操作在13.56 MHz,这一频率能够有效地激发气体分子产生高频振荡,形成大量的正离子、电子和中性粒子。通过适当调节气体流量、压力和射频功率,可以实现等离子
    的头像 发表于 09-14 14:44 891次阅读

    使用逻辑器件优化光纤网络终端装置

    电子发烧友网站提供《使用逻辑器件优化光纤网络终端装置.pdf》资料免费下载
    发表于 09-06 09:58 0次下载
    使用逻辑器件优化<b class='flag-5'>光纤网络</b>终端装置

    利用氨等离子体预处理进行无缝间隙fll工艺的生长抑制

    理想的负斜率,沉积过程应能够实现“自下而上的生长”行为。在本研究,利用等离子体处理的生长抑制过程,研究了二氧化硅等离子体增强原子层沉积(PE-ALD)过程在沟槽结构自下而上的生长。
    的头像 发表于 03-29 12:40 398次阅读
    利用氨<b class='flag-5'>等离子体</b>预处理进行无缝间隙fll工艺的生长抑制