0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

量子力学导致基因突变?

中科院半导体所 来源:把科学带回家 作者:七君 2020-12-30 09:11 次阅读

癌症令人闻之色变,而量子力学又是大热的研究领域,把癌症和量子力学结合在一起,很容易让人产生夸大其词、哗众取宠的联想。

但是一些学者却指出,量子力学可能是 DNA 发生突变,导致复制错误的物理原理,他们还得到了一些证据。我们一起来看看这是怎么回事。

21世纪的化学家们大都同意,量子力学在化学中具有核心位置。比如,量子相干和量子纠缠决定了共价键的形式。而化学又是生化过程的基础,因此不难想象,量子力学也是生化反应的根基。

但是,随着分子越来越大,量子相干就变得难以维持,所以大多数生化过程并不需要用物理学来解释,而只要用经典的球棍模型就可以了。

在20年前,想要用量子力学来解释生物过程,不管是在物理学界还是在生物学界都会遭到耻笑。当时的大多数学者认为,量子力学在微观上有用,在宏观世界,比如生物世界的作用是微不足道的。

他们这样看也不无道理。举个例子,在微观世界,粒子有一定几率可以“穿墙”,这叫做量子隧穿。

虽然生物也是由粒子构成的,但是当粒子数增加时,穿墙的可能性也跟着减小了,因此我们在日常生活中是不可能见到有什么生物能穿墙。

英国萨里大学的物理学家 Jim Al-Khalili 回忆:“当时物理学的老前辈们让我别碰这个方向,他们认为这太扯了。”

可是近20年来,研究者们发现了量子力学在某些生物过程中的重要作用,尤其是解决了生物学的一个大难题——光合作用的效率。

在光合作用中,能吸收光子的光敏分子,如叶绿素叫做发色团。发色团吸收特定波长的光子,其中一小部分光子的能量被转化为热量,也就是分子的振动,而大部分则变成了激子,也就是一种类似于粒子的能量包。

传统理论中,在叶绿素发色团(绿色)间传递的激子(红色)一步一步走到反应中心(橙色)。图片来源:LUCY READING-IKKANDA

激子这种能量包要被传导到一个集中处理站——光合反应中心,才能被用于生命活动。可是,发色团聚集成了一个类似于太阳能板的阵列——天线色素(见上图),而某个发色团产生的激子要到达光合反应中心,需要穿越其他发色团。

传统生物理论认为,激子在发色团之间的传递像是随机乱传的击鼓传花,从一个发色团传给另一个,直到最后到达光合反应中心。这个过程叫做 Förster 耦合

可是问题来了,激子要经历成百上千的发色团才能到达目的地,而每转手一次,就会损失一次能量。也就是说,走的冤枉路越多,光合作用的效率就越低。如果光合作用的能量传输过程真的如此,那么它的理论效率就只有50%。

但是,光合作用的效率是95%,超过人类已知的其他能量转化效率,而且发生十分迅速,这是传统理论无法解释的矛盾。

加州大学伯克利分校劳伦斯伯克利国家实验室的物理学家Graham Fleming 如此驳斥传统模型:“经典的跳跃模型不正确也不充分,它对真实过程的描述是错误的,而且缺失了对光合作用无与伦比的效率的解释。”

可是长久以来,大家认为这个过程中没有量子力学什么事儿。但是在2007年,这种看法被打破了。Fleming 的团队利用能进行光合作用的绿硫细菌Chlorobium tepidium发现,激子的传递过程实际上利用的是量子相干性。

原来,激子具有波粒二象性,它类似于一个向四面八方传播的涟漪,可以同时探索池塘内,也就是天线色素中的各种通道,找到到达光合反应中心最有效的一条途径。

在量子理论中,激子可以同时计算各种路径,找到到达光合反应中心(橙色)最有效的那一条。

Fleming 解释:“量子相干性在光合作用的能量传递过程中起到了很大的作用,揭示了能量传输的效率。(激子)可以同时搜索所有的能量传输通道,找到其中最有效率的那条。”

2010年,多伦多大学的化学研究者 Gregory Scholes 和同事发现,海洋中隐藻门藻类也具有类似的量子相干性。


就这样在短短的20年里,量子生物学的名词被创造了出来,并成了一个欣欣向荣的学科分支。研究者们也发现了越来越多的传统理论无法解释,但可由量子力学解释的生物现象,比如酶的催化效率、嗅觉的机制、鸟类对地球磁场的感受。

欧亚鸲(Erithacus rubecula)能感受地球的磁场,但却无法分辨南北,这个现象很难用经典理论解释,但却可以用量子力学说明。

其中,量子力学能解释的一个重要问题,就是 DNA 突变。

DNA 的双螺旋结构类似于一个旋转上升的梯子,梯子的每个“台阶”实际上是氢键。氢键其实就是连接左右两个碱基的一个质子,而这个质子通常略微更靠近台阶的某一边。

DNA 上的氢键和碱基(AGCT) 图片来源:harvard.edu

1963年,诺贝尔物理学奖委员会成员、瑞典物理学家佩尔-奥洛夫·勒夫丁(Per-Olov Löwdin)在发表在Reviews of Modern Physics上的一篇文章中提出一种理论设想:在 DNA 复制的过程中,氢键上的质子可能处于某些量子态之中,如果这个质子靠近“台阶”错误的一边,那么 DNA 就会发生变异,而质子的这种错误可由量子隧穿实现。

具体来说,在 DNA 复制时,碱基之间的氢键断裂,可以和新的核苷酸组合。正常情况下,碱基A(腺嘌呤)和T(胸腺嘧啶)结合,C(胞嘧啶)和G(鸟嘌呤)结合。

但是,核苷酸可能因为质子隧穿而发生改变,A就会变成 A*,T变成 T*。让勒夫丁感到担忧的质子的这种乱来就叫做互变异构化(tautomerization)。

正常A-T碱基对(上)和互变异构化后的A*-T*碱基对(下)。图片来源:(DOI)10.1039/C5CP00472A

别看只是头上戴了朵花,整个碱基的气质都会发生变化。和 A 不同,A* 不愿意和正经对象 T 结合,而更容易和 G 的对象 C 结合。而 T* 也看不上 A,更容易和 G 结合,整一个大乱炖,这就会导致突变。

勒夫丁的这种设想有没有道理呢?30年后出现了一些间接证据。

在过去,生物学家接受的普遍教育是,突变应该是随机发生的,因此各种突变的发生概率应该差不多,正如理查德·道金斯在著作《盲眼钟表匠》(The Blind Watchmaker)中提出的那样,evolution is blind(演化是盲目的)。

可是在1988年,哈佛大学的生物学家 John Cairns 和同事发现了一个不符合传统进化论的奇特现象:大肠杆菌(E. coli)可以迅速获得有利突变。

他们将无法消化乳糖的大肠杆菌放在只有乳糖的培养皿里。结果,这些大肠杆菌出现了能够消化乳糖的突变,而这个突变的发生速度远超理论预期,也就是突变随机发生的情况。他们的这一研究发表在Nature上。

为了解释大肠杆菌的这种奇怪突变,英国萨里大学的生物学家 Johnjoe McFadden 想到,这或许和量子力学有关。于是,他开始向该校物理系的学者们求助。Al-Khalili 对 McFadden 的看法很感兴趣,就这样,两人开始搭伙研究。

利用勒夫丁的理论,Al-Khalili 和 McFadden 提出,实际上在观测之前,DNA 氢键上的质子处于叠加态中,也就是说它并没有确定自己会倒向突变的那一边,还是没有突变的那一边。

以不会吃乳糖的大肠杆菌为例。在遇到乳糖前,大肠杆菌处于既有可能消化乳糖,也有可能无法消化乳糖的叠加态。Al-Khalili 和 McFadden 继而通过计算指出,乳糖分子的存在使质子的状态向能够消化乳糖的方向塌缩,这就解释了为什么大肠杆菌的变异速度超过经典理论的预期。

在这些研究的鼓舞下,一些雄心勃勃的研究者认为,在攻克癌症方面量子力学将是一个突破口。2013年,慕尼黑大学的化学家 Frank Trixler 甚至提出,DNA 的氢键上发生的质子隧穿现象正是物种演化的起源。

不过,关于量子世界是否支配一些基本的生物过程,学术界还有相当大的争议。量子生物学需要更多的证据才能支撑这些大而美的假说。

在谜底揭晓前,让我们暂时享受这叠加着期待和怀疑的奇妙等待吧。

常因不够变态而感到和环境格格不入?可能是你的 DNA 还没有学会量子隧穿。

原文标题:量子力学导致基因突变?科学家们掌握了一些证据

文章出处:【微信公众号:中科院半导体所】欢迎添加关注!文章转载请注明出处。

责任编辑:haq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 激光
    +关注

    关注

    19

    文章

    3199

    浏览量

    64464
  • 量子
    +关注

    关注

    0

    文章

    478

    浏览量

    25496

原文标题:量子力学导致基因突变?科学家们掌握了一些证据

文章出处:【微信号:bdtdsj,微信公众号:中科院半导体所】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    量子通信与量子计算的关系

    量子通信与量子计算是两个紧密相连的领域,它们之间存在密切的关系,具体表现在以下几个方面: 一、基本概念 量子通信 :是利用量子叠加态和纠缠效应进行信息传递的新型通信方式。它基于
    的头像 发表于 12-19 15:53 204次阅读

    量子通信的基本原理 量子通信网络的构建

    量子通信的基本原理 1. 量子叠加原理 量子叠加原理是量子通信的基础之一。在量子力学中,一个量子
    的头像 发表于 12-19 15:50 344次阅读

    量子通信技术的应用 量子通信与传统通信的区别

    量子通信技术的应用 量子通信技术是一种前沿的通信技术,它基于量子力学原理,利用量子态进行信息传递。这种技术具有高度的安全性和独特的物理特性,使得它在多个领域具有广泛的应用前景。 军事领
    的头像 发表于 12-19 15:45 271次阅读

    是德示波器在量子通信中的潜在应用

    量子通信技术概述及其挑战 量子通信利用量子力学的原理,例如量子叠加和量子纠缠,实现安全、高速的信息传输。与经典通信相比,
    的头像 发表于 11-26 16:46 149次阅读
    是德示波器在<b class='flag-5'>量子</b>通信中的潜在应用

    使用原代肿瘤细胞进行药物筛选的数字微流控系统

    肿瘤学的精准医疗能够为癌症患者量身定制治疗策略,并确保最佳预后。迄今为止,大多数精准疗法都是基于每个患者的基因突变位点设计,部分药物对某些基因突变的患者产生最佳治疗效果,但对发生其他突变的患者疗效
    的头像 发表于 11-18 10:05 651次阅读
    使用原代肿瘤细胞进行药物筛选的数字微流控系统

    量子光通信的概念和原理

    量子光通信,作为量子通信领域的一个重要分支,是一种利用量子光学原理和量子力学特性进行信息传递的先进技术。它不仅继承了光通信的高速、大容量优势,还融合了
    的头像 发表于 08-09 14:22 1204次阅读

    【《计算》阅读体验】量子计算

    测量前可能处于叠加态,这是量子力学既令人难以理解又威力无穷的地方。由于量子具有波粒二象性,因此可以把量子描述为一个波函数,测量前处于看加态的波函数,测量后将坍缩为本征态。 量子的纠缠性
    发表于 07-13 22:15

    量子

    当我们谈论量子计算机时,通常是在讨论一种利用量子力学原理进行计算的全新计算机系统。与传统的计算机使用二进制位(0和1)来表示数据不同,量子计算机使用量子比特(qubit)来存储和处理信
    发表于 03-13 18:18

    量子计算机重构未来 | 阅读体验】+ 了解量子叠加原理

    ,发现只要是涉及量子计算机原理方面的资料,其中提及最多的就是量子叠加,直接忽视专业级大神的那些不太友好的解释,只看科普性的解释:量子叠加原理是量子力学的基本原理之一;
    发表于 03-13 17:19

    量子计算机重构未来 | 阅读体验】+机器学习的终点是量子计算?

    量子力学,不过最近抽空正在脑补,薛定谔方程,费曼的路径积分,还有矩阵力学,等等,这块涉及的数学有点多,李群和李代数等,拓扑流形,复线性代数等。。 不说了,说起来都是痛。 为了能够更快的熟悉这些内容
    发表于 03-10 16:33

    量子计算机重构未来 | 阅读体验】第二章关键知识点

    ,就相当于调整输出的手指朝向。而这个计算方法,刚好就是量子力学中的量子纠缠。而量子纠缠,就有可能将之前计算很麻烦的问题进行简单计算,从而达到提速的目的。 作者介绍了量子计算机目前的两大
    发表于 03-06 23:17

    清华大学成功研发无串扰量子网络节点

    量子网络依托量子力学原理,以其特有的储藏、处置及传播性质,成为了量子通信和巨型量子计算的关键支撑。清华大学科研团队通过巧妙地运用同种离子的双译码量子
    的头像 发表于 01-24 14:19 619次阅读

    科学家研发原子量子存储器件,可大规模制造并应用于量子网络

    光子以其独特的属性,成为了量子信息传输的首选媒介。然而,为了保证量子力学状态的准确性和转化的稳定性,我们需要在某些特定情况下对光子进行存储。
    的头像 发表于 01-23 10:31 564次阅读

    微型量子存储元件的量产之路

    光子特别适合传输量子信息。光子可用于通过光缆向卫星或量子存储元件发送量子信息。但光子的量子力学状态必须是尽可能精确地存储,并经过一定时间后再转换回光子。
    的头像 发表于 01-22 14:42 492次阅读

    量子力学三大定律公式

    量子力学是描述微观世界的物理理论,为了描述微观粒子的行为,量子力学提出了三个重要的定律。这三个定律是量子力学的基石,构建了整个理论体系。本文将详细介绍量子力学的三大定律:波函数定律、不
    的头像 发表于 01-15 09:44 4059次阅读