0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

什么是内存管理?如何进行内存管理?及内存管理的方案与分析

Q4MP_gh_c472c21 来源:嵌入式云IOT技术圈 作者:嵌入式云IOT技术圈 2021-03-26 13:38 次阅读

前面已经将所有的硬件驱动实现,验证了硬件功能。但是每一个硬件都是单独测试的,而且并不完善。下一步,我们需要对各个驱动进行整合完善。在整合之前,需要做一些基础工作。其中之一就是实现内存管理。什么叫内存管理呢?为什么要做内存管理?前面我们已经大概了解了程序中的变量现在我们复习一下:局部变量、全局变量。

局部变量在进入函数时从栈空间分配,退出函数前释放。全局变量则在整个程序运行其中一直使用。在程序编译时就已经分配了RAM空间。

那还有没有第三种变量呢?可以说没有。但是如果从生存周期上看,是有的:一个变量,在多个函数内使用,但是又不是整个程序运行期间都使用。或:一个变量,在一段时间内使用,不是整个程序运行生命周期都要用,但是用这个变量的函数会退出,然后重复进入(用static定义的局部变量相当于全局变量)

如果不使用动态内存管理,这样的变量就只能定义为全局变量。如果将这些变量定义为指针,当要使用时,通过内存管理分配,使用完后就释放,这就叫做动态分配。举个实际的例子:

一个设备,有三种通信方式:串口,USB网络,在通信过程每个通信方式需要1K RAM。经过分析,3种通信方式不会同时使用。那么,如果不使用动态内存,则需要3K变量。如果使用内存管理动态分配,则只需要1K内存就可以了。(这个只是举例,如果简单的系统,确定三种方式不同时使用,可以直接复用内存)

通信方式只是举例,其实一个系统中,并不是所有设备都一直使用,如果使用动态内存管理,RAM的峰值用量将会大大减少。

内存管理方案

不发明车轮,只优化轮胎。

内存管理是编程界的一个大话题,有很多经典的方案。很多人也在尝试写新的方案。内存分配模块我们使用K&R C examples作为基础,然后进行优化。K&R是谁?就是写《C程序设计语言》的两个家伙。如果你没有这本书,真遗憾。这本书的8.7章节,《实例--存储分配程序》,介绍了一种基本的存储分配方法。代码见alloc.c,整个代码只有120行,而且结构很美。

K&R 内存管理方案分析

下面我们结合代码分析这种内存分配方案。代码在wujiqueUtilitiesalloc文件夹。

内存分析

初始化

在malloc函数中,如果是第一次调用就会初始化内存链表。代码原来是通过获取堆地址,在堆上建立内存池。我们把他改为更直观的数组定义方式。内存建立后的内存视图如下:

27ce31e6-8dcc-11eb-8b86-12bb97331649.png

内存分配的最小单元是:

typedef struct ALLOC_HDR{ struct{ struct ALLOC_HDR *ptr; unsigned int size;/*本块内存容量*/} s; unsigned int align; unsigned int pad;} ALLOC_HDR;

这也就是内存管理结构体。在32位ARM系统上,这个结构体是16字节。

第一次分配

每次分配,就是在一块可以分配的空间尾部切割一块出来,切割的大小是16字节的倍数,而且会比需要的内存多一块头。这块头在内存释放时需要使用。这一块,也就是内存管理的开销。

27fe35f8-8dcc-11eb-8b86-12bb97331649.png

分配释放后

经过多次分配释放后,内存可能如下图,绿色是两块不连续的空闲块,黄色是分配出去的块。分配出去的块,已经不在内存链表里面。

283eaa8e-8dcc-11eb-8b86-12bb97331649.png

缺点

一般情况上面的代码已经能满足需求。但是,有以下缺陷:

缺点1:容易碎片化

分配使用首次适应法,也即是找到一块大于等于要分配内存的空闲块,立刻进行分配。这种方法的优点是速度较快,缺点是容易内存碎片化,分配时将很多大块内存切割成小内存了。经过多次分配后,很可能出现以下情况:

空闲内存总量还有10K,但是却被分散在10个块内,而且没有大容量的内存块,再申请2K内存就出现失败。如果对时间并不是那么敏感,我们可以使用最适合法,也即是遍历空闲链表,查找一个最合适的内存(大于要分配内存且容量最小的空闲块),减少大内存被切碎的概率。需要注意的是,最适合法,除了会增加分配时间,不会减少内存碎片数量,只是增加了空闲内存的集中度。假设经过多次分配后,空闲总量还是10K,也是分散在10个空闲块,但是在这10个空闲块中,会有5K的大块,再申请2K的时候,就可以申请到2K内存了。

缺点2:内存消耗

内存分配方案使用了一个结构体,每次分配的最小单位就是这个结构体的大小16字节。

typedef struct ALLOC_HDR{ struct{ struct ALLOC_HDR *ptr; unsigned int size;/*本块内存容量*/} s; unsigned int align; unsigned int pad;} ALLOC_HDR;

一次分配,最少就是2个结构体(一个结构体用于管理分配出去的内存,其余结构体做为申请内存),也就是32字节。如果代码有大量小内存申请,例如申请100次8个字节

需求内存:100X8=800字节实际消耗内存100X32 = 3200字节利用率只有800/3200 =25%

如果内存分配只有25%的使用率,对于小内存嵌入式设备来说,是致命的方案缺陷。

如何解决呢?我们可以参考LINUX内存分配方案SLAB。在LINUX中,有很多模块需要申请固定大小的内存(例如node结构体),为了加快分配速度,系统会使用malloc先从大内存池中申请一批node结构体大小的内存,作为一个slab内存池。当需要分配node结构体时,就直接从slab内存池申请。同理,可以将内存分配优化为:需要小内存时,从大块内存池分配一块大内存,例如512,使用新算法管理,用于小内存分配。当512消耗尽,再从大内存池申请第二块512字节大内存。当小内存释放时,判断小块内存池是否为空,如为空,将小块内存池释放回大内存池。那如何管理这个小内存池呢?

缺点3:没有管理已分配内存

内存分配没有将已分配内存管理起来。我们可以对已分配内存进行统一管理:

1 已分配内存在头部有原来的结构体,通过ptr指针,将所有已分配内存连接在已分配链表上。2 利用不使用的align跟pad成员,记录分配时间跟分配对象(记录哪个驱动申请的内存)

通过上面优化后,就可以统计已经分配了多少内存,还有多少空闲内存,哪个模块申请了最多内存等数据。

使用

1 将代码中的所有free改为为wjq_free,malloc改为wjq_malloc。

串口缓冲用了free跟malloc.fatfs的syscall.c 用了lwip的mem.h用了。

2 修改启动代码, 栈跟堆改小。不用库的malloc,堆可以完全不要。栈,还是要保留,但是不需要那么大,如果函数内用到比较大的局部变量,改为动态申请。

Stack_Size EQU 0x00002000

AREA STACK, NOINIT, READWRITE, ALIGN=3Stack_Mem SPACE Stack_Size__initial_sp

; 《h》 Heap Configuration; 《o》 Heap Size (in Bytes) 《0x0-0xFFFFFFFF:8》; 《/h》

Heap_Size EQU 0x00000010

AREA HEAP, NOINIT, READWRITE, ALIGN=3__heap_baseHeap_Mem SPACE Heap_Size__heap_limit

3 内存池开了80K,编译不过

linking.。..Objectswujique.axf: Error: L6406E: No space in execution regions with .ANY selector matching dev_touchscreen.o(.bss)。.Objectswujique.axf: Error: L6406E: No space in execution regions with .ANY selector matching mcu_uart.o(.bss)。.Objectswujique.axf: Error: L6406E: No space in execution regions with .ANY selector matching etharp.o(.bss)。.Objectswujique.axf: Error: L6406E: No space in execution regions with .ANY selector matching mcu_can.o(.bss)。.Objectswujique.axf: Error: L6406E: No space in execution regions with .ANY selector matching netconf.o(.bss)。先把内存池改小,编译通过之后,分析 map文件,用了较多全局变量的统统改小或者改为动态申请。分析map文件,还可以检查还有没有使用库里面的malloc。Code (inc. data) RO Data RW Data ZI Data Debug Object Name 124 32 0 4 40976 1658 alloc.o 16 0 0 0 0 2474 def.o 96 34 8640 4 0 1377 dev_dacsound.o 300 36 0 0 0 2751 dev_esp8266.o 204 38 0 1 0 1446 dev_key.o 436 98 0 10 16 3648 dev_touchkey.o 310 18 0 14 3000 3444 dev_touchscreen.o 932 18 0 4 0 15981 dhcp.o 0 0 0 0 3964 5933 dual_func_demo.o 280 14 12 0 200 5963 etharp.o 0 0 0 0 0 35864 ethernetif.o 0 0 0 0 0 3820 inet.o 98 0 0 0 0 2022 inet_chksum.o 0 0 0 0 0 4163 init.o 168 4 0 20 0 4763 ip.o 0 0 4 0 0 6463 ip_addr.o 386 4 0 0 0 4118 ip_frag.o 264 38 0 8 16 383399 main.o 84 8 0 0 0 1410 mcu_adc.o 60 32 0 1 68 1511 mcu_can.o 12 0 0 0 0 521 mcu_dac.o 128 14 0 0 0 2352 mcu_i2c.o 28 8 0 1 0 630 mcu_i2s.o 336 92 0 0 0 2689 mcu_rtc.o 430 86 0 1 0 4396 mcu_timer.o 1564 82 0 0 328 9072 mcu_uart.o 504 20 0 12 0 4510 mem.o 56 10 0 0 9463 3250 memp.o 120 14 0 0 0 1651 misc.o 0 0 0 0 56 1066 netconf.o 118 0 0 0 0 4267 netif.o 684 0 0 0 0 6971 pbuf.o 36 8 392 0 8192 824 startup_stm32f40_41xxx.o

alloc.o 内存池dev_touchscreen.o 触摸屏缓冲dual_func_demo.o USB,应该能优化memp.o 什么鬼?又一个内存池?应该是要优化掉startup_stm32f40_41xxx.o 启动代码,是栈跟堆用的RAM.

由于编译器的优化,项目没用到的代码没有编译进来,上面的map数据并不完整。等后面我们做完全部测试程序,所有用到的代码都会参与连接,到时还需要优化一次。

总结

内存管理暂时到此,等后面所有功能都完成后,再进行一次优化。如果对内存分配时间有更高要求,可使用伙伴内存分配法。
编辑:lyn

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 代码
    +关注

    关注

    30

    文章

    4787

    浏览量

    68591
  • 内存管理
    +关注

    关注

    0

    文章

    168

    浏览量

    14137

原文标题:深度:产品级的MCU是如何进行内存管理的?

文章出处:【微信号:gh_c472c2199c88,微信公众号:嵌入式微处理器】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    Linux下如何管理虚拟内存 使用虚拟内存时的常见问题

    在Linux系统中,虚拟内存管理是操作系统内核的一个重要功能,负责管理物理内存和磁盘上的交换空间。以下是对Linux下如何管理虚拟
    的头像 发表于 12-04 09:19 385次阅读

    虚拟内存的作用和原理 如何调整虚拟内存设置

    虚拟内存,也称为虚拟内存管理或页面文件,是计算机操作系统中的一种内存管理技术。它允许系统使用硬盘空间作为额外的RAM(随机存取存储器),以弥
    的头像 发表于 12-04 09:13 395次阅读

    Linux内存泄露案例分析内存管理分享

    作者:京东科技 李遵举 一、问题 近期我们运维同事接到线上LB(负载均衡)服务内存报警,运维同事反馈说LB集群有部分机器的内存使用率超过80%,有的甚至超过90%,而且内存使用率还再不停的增长。接到
    的头像 发表于 10-24 16:14 738次阅读
    Linux<b class='flag-5'>内存</b>泄露案例<b class='flag-5'>分析</b>和<b class='flag-5'>内存</b><b class='flag-5'>管理</b>分享

    Linux内存管理中HVO的实现原理

    代码阅读工具:vim+ctags+cscope本文主要介绍内存管理中的HVO(HugeTLB Vmemmap Optimization)特性,通过HVO可以节省管理HugeTLB 页面元数据
    的头像 发表于 10-22 16:51 242次阅读
    Linux<b class='flag-5'>内存</b><b class='flag-5'>管理</b>中HVO的实现原理

    Windows管理内存的三种主要方式

    Windows操作系统提供了多种方式来管理内存,以确保系统资源的有效利用和性能的优化。以下是关于Windows管理内存的三种主要方式的详细阐述,包括堆
    的头像 发表于 10-12 17:09 774次阅读

    内存管理的硬件结构

    常见的内存分配函数有malloc,mmap等,但大家有没有想过,这些函数在内核中是怎么实现的?换句话说,Linux内核的内存管理是怎么实现的?
    的头像 发表于 09-04 14:28 306次阅读
    <b class='flag-5'>内存</b><b class='flag-5'>管理</b>的硬件结构

    Jtti:新加坡云服务器运行内存和存储内存有何区别?

    新加坡云服务器 的运行内存(RAM)和存储内存在功能、速度、用途等方面有所区别。以下是它们的主要差异: 一、功能: 运行内存(RAM):主要用于临时存储正在运行的程序和数据,以便CPU可以快速访问
    的头像 发表于 06-25 14:26 491次阅读

    ESP-IDF内核中的内存管理如何验证?

    请教一下,ESP-IDF 内核中的内存管理如何验证
    发表于 06-19 06:30

    深入理解Java 8内存管理机制及故障排查实战指南

    Java的自动内存管理机制是由 JVM 中的垃圾收集器来实现的,垃圾收集器会定期扫描堆内存中的对象,检测并清除不再使用的对象,以释放内存资源。
    的头像 发表于 04-04 08:10 1001次阅读
    深入理解Java 8<b class='flag-5'>内存</b><b class='flag-5'>管理</b>机制及故障排查实战指南

    物理内存模型的演变

    内存管理概述中,主要是以Linux v2.6.11为例进行分析的,但是计算技术在不断发展,新的存储架构、新的指令集架构、新的SoC架构等都对物理内存
    的头像 发表于 02-25 10:35 473次阅读

    C语言中的动态内存管理讲解

    本章将讲解 C 中的动态内存管理。C 语言为内存的分配和管理提供了几个函数。这些函数可以在 头文件中找到。
    的头像 发表于 02-23 14:03 395次阅读
    C语言中的动态<b class='flag-5'>内存</b><b class='flag-5'>管理</b>讲解

    Linux内核内存管理之ZONE内存分配器

    内核中使用ZONE分配器满足内存分配请求。该分配器必须具有足够的空闲页帧,以便满足各种内存大小请求。
    的头像 发表于 02-21 09:29 902次阅读

    系统内存和运行内存的区别

    系统内存和运行内存都是计算机中重要的概念,它们在计算机的存储和运行方面起着不可或缺的作用。虽然它们与计算机存储和运行息息相关,但是它们具有不同的功能和实现方式。接下来我将详细介绍系统内存和运
    的头像 发表于 01-15 16:32 3362次阅读

    Linux内核内存管理架构解析

    的要求。本文从内存管理硬件架构、地址空间划分和内存管理软件架构三个方面入手,尝试对内存管理的软硬
    的头像 发表于 01-04 09:24 664次阅读
    Linux内核<b class='flag-5'>内存</b><b class='flag-5'>管理</b>架构解析

    段式存储管理和页式存储管理的区别

    段式存储管理和页式存储管理是操作系统中两种常见的内存管理技术,它们在物理内存的分配和管理上有着显
    的头像 发表于 12-30 17:17 4913次阅读
    段式存储<b class='flag-5'>管理</b>和页式存储<b class='flag-5'>管理</b>的区别