0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

TensorRT的C++接口解析

星星科技指导员 来源:NVIDIA 作者:Ken He 2022-05-13 15:41 次阅读

本章说明 C++ API 的基本用法,假设您从 ONNX 模型开始。sampleOnnxMNIST更详细地说明了这个用例。

C++ API 可以通过头文件NvInfer.h访问,并且位于nvinfer1命名空间中。例如,一个简单的应用程序可能以:

#include “NvInfer.h”

using namespace nvinfer1;

TensorRT C++ API 中的接口类以前缀I开头,例如ILoggerIBuilder等。

CUDA 上下文会在 TensorRT 第一次调用 CUDA 时自动创建,如果在该点之前不存在。通常最好在第一次调用 TensoRT 之前自己创建和配置 CUDA 上下文。 为了说明对象的生命周期,本章中的代码不使用智能指针;但是,建议将它们与 TensorRT 接口一起使用。

3.1. The Build Phase

要创建构建器,首先需要实例化ILogger接口。此示例捕获所有警告消息,但忽略信息性消息:

class Logger : public ILogger           
{
    void log(Severity severity, const char* msg) noexcept override
    {
        // suppress info-level messages
        if (severity <= Severity::kWARNING)
            std::cout << msg << std::endl;
    }
} logger;

然后,您可以创建构建器的实例:

IBuilder* builder = createInferBuilder(logger);

3.1.1. Creating a Network Definition

创建构建器后,优化模型的第一步是创建网络定义:

uint32_t flag = 1U <
    (NetworkDefinitionCreationFlag::kEXPLICIT_BATCH); 

INetworkDefinition* network = builder->createNetworkV2(flag);

为了使用 ONNX 解析器导入模型,需要kEXPLICIT_BATCH标志。有关详细信息,请参阅显式与隐式批处理部分。

3.1.2. Importing a Model using the ONNX Parser

现在,需要从 ONNX 表示中填充网络定义。 ONNX 解析器 API 位于文件NvOnnxParser.h中,解析器位于nvonnxparserC++ 命名空间中。

#include “NvOnnxParser.h”

using namespace nvonnxparser;

您可以创建一个 ONNX 解析器来填充网络,如下所示:

IParser*  parser = createParser(*network, logger);

然后,读取模型文件并处理任何错误。

parser->parseFromFile(modelFile, 
    static_cast(ILogger::Severity::kWARNING));
for (int32_t i = 0; i < parser.getNbErrors(); ++i)
{
std::cout << parser->getError(i)->desc() << std::endl;
}

TensorRT 网络定义的一个重要方面是它包含指向模型权重的指针,这些指针由构建器复制到优化的引擎中。由于网络是通过解析器创建的,解析器拥有权重占用的内存,因此在构建器运行之前不应删除解析器对象。

3.1.3. Building an Engine

下一步是创建一个构建配置,指定 TensorRT 应该如何优化模型。

IBuilderConfig* config = builder->createBuilderConfig();

这个接口有很多属性,你可以设置这些属性来控制 TensorRT 如何优化网络。一个重要的属性是最大工作空间大小。层实现通常需要一个临时工作空间,并且此参数限制了网络中任何层可以使用的最大大小。如果提供的工作空间不足,TensorRT 可能无法找到层的实现。默认情况下,工作区设置为给定设备的总全局内存大小;必要时限制它,例如,在单个设备上构建多个引擎时。

config->setMemoryPoolLimit(MemoryPoolType::kWORKSPACE, 1U << 20);

一旦指定了配置,就可以构建引擎。

IHostMemory*  serializedModel = builder->buildSerializedNetwork(*network, *config);

由于序列化引擎包含权重的必要拷贝,因此不再需要解析器、网络定义、构建器配置和构建器,可以安全地删除:

delete parser;
delete network;
delete config;
delete builder;

然后可以将引擎保存到磁盘,并且可以删除它被序列化到的缓冲区。

delete serializedModel

注意:序列化引擎不能跨平台或 TensorRT 版本移植。引擎特定于它们构建的确切 GPU 模型(除了平台和 TensorRT 版本)。

3.2. Deserializing a Plan

假设您之前已经序列化了一个优化模型并希望执行推理,您将需要创建一个运行时接口的实例。与构建器一样,运行时需要一个记录器实例:

IRuntime* runtime = createInferRuntime(logger);

假设您已将模型从缓冲区中读取,然后可以对其进行反序列化以获得引擎:

ICudaEngine* engine = 
  runtime->deserializeCudaEngine(modelData, modelSize);

3.3. Performing Inference

引擎拥有优化的模型,但要执行推理,我们需要管理中间激活的额外状态。这是通过ExecutionContext接口完成的:

IExecutionContext *context = engine->createExecutionContext();

一个引擎可以有多个执行上下文,允许一组权重用于多个重叠的推理任务。 (当前的一个例外是使用动态形状时,每个优化配置文件只能有一个执行上下文。)

要执行推理,您必须为输入和输出传递 TensorRT 缓冲区,TensorRT 要求您在指针数组中指定。您可以使用为输入和输出张量提供的名称查询引擎,以在数组中找到正确的位置:

int32_t inputIndex = engine->getBindingIndex(INPUT_NAME);
int32_t outputIndex = engine->getBindingIndex(OUTPUT_NAME);

使用这些索引,设置一个缓冲区数组,指向 GPU 上的输入和输出缓冲区:

void* buffers[2];
buffers[inputIndex] = inputBuffer;
buffers[outputIndex] = outputBuffer;

然后,您可以调用 TensorRT 的 enqueue 方法以使用CUDA 流异步启动推理:

context->enqueueV2(buffers, stream, nullptr);

通常在内核之前和之后将cudaMemcpyAsync()排入队列以从 GPU 中移动数据(如果数据尚不存在)。enqueueV2()的最后一个参数是一个可选的 CUDA 事件,当输入缓冲区被消耗时发出信号,并且可以安全地重用它们的内存。

要确定内核(可能还有memcpy())何时完成,请使用标准 CUDA 同步机制,例如事件或等待流。

关于作者

Ken He 是 NVIDIA 企业级开发者社区经理 & 高级讲师,拥有多年的 GPU 和人工智能开发经验。自 2017 年加入 NVIDIA 开发者社区以来,完成过上百场培训,帮助上万个开发者了解人工智能和 GPU 编程开发。在计算机视觉,高性能计算领域完成过多个独立项目。并且,在机器人无人机领域,有过丰富的研发经验。对于图像识别,目标的检测与跟踪完成过多种解决方案。曾经参与 GPU 版气象模式GRAPES,是其主要研发者。

审核编辑:郭婷

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 机器人
    +关注

    关注

    211

    文章

    28405

    浏览量

    207020
  • NVIDIA
    +关注

    关注

    14

    文章

    4985

    浏览量

    103027
  • gpu
    gpu
    +关注

    关注

    28

    文章

    4735

    浏览量

    128923
收藏 人收藏

    评论

    相关推荐

    C7000 C/C++优化指南用户手册

    电子发烧友网站提供《C7000 C/C++优化指南用户手册.pdf》资料免费下载
    发表于 11-09 15:00 0次下载
    <b class='flag-5'>C</b>7000 <b class='flag-5'>C</b>/<b class='flag-5'>C++</b>优化指南用户手册

    C语言和C++中结构体的区别

    同样是结构体,看看在C语言和C++中有什么区别?
    的头像 发表于 10-30 15:11 206次阅读

    C7000优化C/C++编译器

    电子发烧友网站提供《C7000优化C/C++编译器.pdf》资料免费下载
    发表于 10-30 09:45 0次下载
    <b class='flag-5'>C</b>7000优化<b class='flag-5'>C</b>/<b class='flag-5'>C++</b>编译器

    ostream在c++中的用法

    )是 C++ 标准输出流体系的核心部分,用于向各种输出设备(如控制台、文件等)发送数据。 1. 基本概念 ostream 是一个抽象基类,它定义了向输出流写入数据的基本接口。 ostream 类本身
    的头像 发表于 09-20 15:11 698次阅读

    基于OpenHarmony标准系统的C++公共基础类库案例:SafeBlockQueue

    1、程序简介该程序是基于OpenHarmony的C++公共基础类库的读写锁:SafeBlockQueue。线程安全阻塞队列SafeBlockQueue类,提供阻塞和非阻塞版的入队入队和出队接口,并提
    的头像 发表于 08-30 12:41 301次阅读
    基于OpenHarmony标准系统的<b class='flag-5'>C++</b>公共基础类库案例:SafeBlockQueue

    OpenHarmony标准系统C++公共基础类库案例:HelloWorld

    1、程序简介该程序是基于凌蒙派OpenHarmony-v3.2.1标准系统C++公共基础类库的简单案例:HelloWorld。主要讲解C++公共基础类库案例如何搭建和编译。2、程序解析2.1、创建
    的头像 发表于 08-13 08:23 519次阅读
    OpenHarmony标准系统<b class='flag-5'>C++</b>公共基础类库案例:HelloWorld

    OpenVINO2024 C++推理使用技巧

    很多人都使用OpenVINO新版的C++ 或者Python的SDK,都觉得非常好用,OpenVINO2022之后的版本C++ SDK做了大量的优化与整理,已经是非常贴近开发的使用习惯与推理方式。与OpenCV的Mat对象对接方式更是几乎无缝对接,非常的方便好用。
    的头像 发表于 07-26 09:20 895次阅读

    C++语言基础知识

    电子发烧友网站提供《C++语言基础知识.pdf》资料免费下载
    发表于 07-19 10:58 7次下载

    C++中实现类似instanceof的方法

    C++有多态与继承,但是很多人开始学习C++,有时候会面临一个常见问题,就是如何向下转型,特别是不知道具体类型的时候,这个时候就希望C++ 可以向Java或者Python中有instanceof这个
    的头像 发表于 07-18 10:16 582次阅读
    <b class='flag-5'>C++</b>中实现类似instanceof的方法

    鸿蒙OS开发实例:【Native C++

    使用DevEco Studio创建一个Native C++应用。应用采用Native C++模板,实现使用NAPI调用C标准库的功能。使用C标准库hypot
    的头像 发表于 04-14 11:43 2619次阅读
    鸿蒙OS开发实例:【Native <b class='flag-5'>C++</b>】

    使用 MISRA C++:2023® 避免基于范围的 for 循环中的错误

    在前两篇博客中,我们 向您介绍了新的 MISRA C++ 标准 和 C++ 的历史 。在这篇博客中,我们将仔细研究以 C++ 中 for 循环为中心的特定规则。
    的头像 发表于 03-28 13:53 790次阅读
    使用 MISRA <b class='flag-5'>C++</b>:2023® 避免基于范围的 for 循环中的错误

    Type-C接口母座引脚定义解析

    Type-C接口母座作为一种先进的连接标准,在现代电子设备中得到广泛应用。本文将深入解析Type-C接口母座的引脚定义,揭示其在实现多功能连
    的头像 发表于 02-19 15:43 7436次阅读

    c语言,c++,java,python区别

    C语言、C++、Java和Python是四种常见的编程语言,各有优点和特点。 C语言: C语言是一种面向过程的编程语言。它具有底层的特性,能够对计算机硬件进行直接操作。
    的头像 发表于 02-05 14:11 2385次阅读

    vb语言和c++语言的区别

    VB语言和C++语言是两种不同的编程语言,虽然它们都属于高级编程语言,但在设计和用途上有很多区别。下面将详细比较VB语言和C++语言的区别。 设计目标: VB语言(Visual Basic)是由
    的头像 发表于 02-01 10:20 2293次阅读

    C++简史:C++是如何开始的

    MISRA C++:2023,MISRA® C++ 标准的下一个版本,来了!为了帮助您做好准备,我们介绍了 Perforce 首席技术支持工程师 Frank van den Beuken 博士撰写
    的头像 发表于 01-11 09:00 588次阅读
    <b class='flag-5'>C++</b>简史:<b class='flag-5'>C++</b>是如何开始的