0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

传感器融合技术在自动驾驶中的应用

知行科技iMotion 来源:知行科技iMotion 作者:知行科技iMotion 2022-06-14 16:27 次阅读

干货时间:本文将跟随iMotioner Ting一起走进传感器融合技术,结合具体方案,分享自动驾驶相关技术。

随着软硬件技术能力的飞速发展,当前汽车可装载的智能驾驶传感器种类可谓是琳琅满目,这对如何最大化利用传感器的性能,为智能驾驶提供更充分的保障带来了挑战。

1传感器融合技术

传感器融合技术是智能驾驶相关技术栈中极其重要的一环,简单来讲,它是指通过一系列算法,将车身所搭载的各类型传感器所探测的信息有机的整合到一起,最大化整车对环境的感知能力,从而为后端的行为决策和控制等模块提供环境信息。

单个的感知传感器通常由于探测机理、可视角度等原因,具有一定的感知局限性,如果说各个独立的传感器让汽车拥有了眼睛,那么传感器融合技术, 将使车身看得更清,告别“近视”。

传感器融合按照其融合的作用,一般有补偿式融合,冗余式融合和协作式融合。1.补偿式融合指各个传感器对相同的环境进行探测,然后通过融合算法,或选取各个传感器的优势探测信号,或整合各个传感器各自的探测范围,从而获取更精准和覆盖范围更广的环境信息。以当前主流的前视毫米波雷达和摄像头融合(RV Fusion)方案为例:

2.冗余性融合是指各个传感器对同一目标进行探测,融合算法整合所有对同一目标的探测信息,从而提升目标的可信度,降低单个传感器误检对整体系统的影响。 冗余性融合广泛应用于与安全性相关的功能中, 比如现流行的自动紧急刹车(AEB)功能,如果该车具有多个传感器,则在对目标进行自动制动之前,一般要求至少有两种及以上传感器同时检测到该目标,确保目标存在性的冗余,降低该目标是由单个传感器误识别的可能性,从而降低误制动的概率(基于当前的法律法规,这种误制动是相当危险的,需尽力避免)。同样以前述的雷达摄像头方案为例,通常毫米波雷达检测时,由于环境噪声的干扰以及信号处理算法的局限,会不时地出现目标误识别的现象,一般把这种误识别产生的目标称作鬼影(ghost)目标,而摄像头的探测原理使得其具有更低的误识别率,所以在这种系统中,如果安全性功能要想启动,一般要求雷达和摄像头都同时检测到同一目标,从而降低误制动率。

3.协作式融合是指整合各个传感器的探测信息,相对来讲这些探测信息都是较单一且低维度的,进行提取出更深度和高维度的探测信息。比如,通常摄像头探测的图像信息丢失了环境的三维信息,如果将雷达探测的点云信息和图像像素信息进行融合,可以构建出带有深度信息的图像(深度图),那么利用这张深度图也就可以提取出完整的三维环境信息,除了目标感知之外,还能提供可行域(Fress Space)等更高维度的信息。当前流行的前融合即属于这种融合大类,目前多家智能驾驶企业正在这个方向发力,并尝试将其运用到量产项目中。

2智慧融合感知

当前,知行科技正着力于实现视觉感知与超声波感知的融合,视觉感知对障碍物的存在性和类别判断上有一定优势,只要依靠数据闭环链路,不断迭代优化视觉感知性能,就能对大部分常见的障碍物有较好的识别能力。超声波传感器对近距离的障碍物具有稳定的感知能力,并且对任意类别的障碍物都能无差别探测,比如地锁,花台,限位杆等,广泛应用于泊车功能的环境感知。将视觉和超声波对障碍物的探测进行融合, 属于补偿式融合,将能够更加稳定鲁棒地探测泊车位附近的障碍物,为泊车功能提供保障,此方案也将直接应用于知行科技的泊车功能中。此外,即将推出的iDC控制器,搭载有四颗环视摄像头,知行科技也将对这四个摄像头的感知结果进行一个FOV层面的融合,从而提供360°的无死角感知范围。

3未来 摆脱“近视”

近年来大火的高速自动导航功能,要求自车具有稳定的360°无差别的感知能力,所以多传感器基于FOV层面的融合,以及各传感器在FOV重叠区域的融合处理,是自动导航功能必不可少的方案。放眼高阶自动驾驶,从前述的感知结果和融合方案可以看出,当前阶段下主流的感知结果都是基于交通参与者这一障碍物(还可能包含信号灯,锥桶等静态障碍物)为目标的,然而真实的交通场景是及其复杂的,交通参与者只是其中一个部分,对环境的完整勾勒无法靠目标级别的感知融合来实现。

当前,不少研究方正尝试对各个传感器的原始信息进行前融合,如原生的摄像头图片或者像素,雷达的点云甚至电磁波信号等,以及尽量不丢失感知信息的情况下完成对环境的更充分表达,从而迈向高阶自动驾驶,这一方案能否最终落地量产,还需要时间持续关注。上述的各种融合方式,没有严格的界限,在一个智能驾驶系统中通常根据具体需求动态的选择融合方式,且多种融合方式可能同时运用在相同传感器中。智能驾驶的功能逐渐迈向高阶,汽车所搭载的传感器种类及数量也大幅度增加,但单个传感器始终摆脱不了其固有局限,是一双“近视”的眼睛,通过不断优化的传感器融合算法,让汽车摆脱“近视”,看得更清,行得更远,更安全。

原文标题:猿桌派 | 传感器融合,让智能驾驶告别“近视”~

文章出处:【微信公众号:知行科技iMotion】欢迎添加关注!文章转载请注明出处。

审核编辑:汤梓红

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 传感器
    +关注

    关注

    2550

    文章

    51071

    浏览量

    753325
  • 智能驾驶
    +关注

    关注

    3

    文章

    2515

    浏览量

    48754
  • 自动驾驶
    +关注

    关注

    784

    文章

    13804

    浏览量

    166426
  • 知行科技
    +关注

    关注

    1

    文章

    43

    浏览量

    3421

原文标题:猿桌派 | 传感器融合,让智能驾驶告别“近视”~

文章出处:【微信号:gh_dd1765c34afb,微信公众号:知行科技iMotion】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    物联网传感器类型解析 传感器类型自动驾驶的应用

    物联网传感器类型解析及其自动驾驶的应用 传感器是一种检测装置,能感受到被测量的信息,并能
    的头像 发表于 12-06 14:15 356次阅读

    传感器融合自动驾驶的应用趋势探究

    自动驾驶技术的快速发展加速交通行业变革,为实现车辆自动驾驶,需要车辆对复杂动态环境做出准确、高效的响应,而多传感器融合
    的头像 发表于 12-05 09:06 307次阅读
    多<b class='flag-5'>传感器</b><b class='flag-5'>融合</b>在<b class='flag-5'>自动驾驶</b><b class='flag-5'>中</b>的应用趋势探究

    一文聊聊自动驾驶测试技术的挑战与创新

    ,包括场景生成的多样性与准确性、多传感器数据融合的精度验证、高效的时间同步机制,以及仿真平台与实际场景的匹配等问题。 自动驾驶测试的必要性与现状 1.1 自动驾驶
    的头像 发表于 12-03 15:56 171次阅读
    一文聊聊<b class='flag-5'>自动驾驶</b>测试<b class='flag-5'>技术</b>的挑战与创新

    MEMS技术自动驾驶汽车的应用

    MEMS技术自动驾驶汽车的应用主要体现在传感器方面,这些传感器
    的头像 发表于 11-20 10:19 336次阅读

    人工智能的应用领域有自动驾驶

    的核心技术 自动驾驶汽车的核心依赖于人工智能,尤其是机器学习和深度学习技术。这些技术使得汽车能够通过传感器收集大量数据,并实时进行分析。以下
    的头像 发表于 10-22 16:18 516次阅读

    FPGA自动驾驶领域有哪些优势?

    领域的主要优势: 高性能与并行处理能力: FPGA内部包含大量的逻辑门和可配置的连接,能够同时处理多个数据流和计算任务。这种并行处理能力使得FPGA处理自动驾驶复杂的图像识别、传感器
    发表于 07-29 17:11

    FPGA自动驾驶领域有哪些应用?

    的数据处理和预处理,实现实时计算和反馈。 二、数据传输与处理FPGA自动驾驶扮演着数据传输和处理的角色。它能够支持多种传感器(如激光雷达、摄像头、GPS等)的数据传输,并通过其高速
    发表于 07-29 17:09

    自动驾驶识别技术有哪些

    自动驾驶的识别技术自动驾驶系统的重要组成部分,它使车辆能够感知并理解周围环境,从而做出智能决策。自动驾驶识别
    的头像 发表于 07-23 16:16 650次阅读

    自动驾驶传感器技术介绍

    自动驾驶传感器技术自动驾驶系统的核心组成部分,它使车辆能够感知并理解周围环境,从而做出智能决策。以下是对自动驾驶
    的头像 发表于 07-23 16:08 2269次阅读

    自动驾驶汽车传感器有哪些

    自动驾驶汽车传感器是实现自动驾驶功能的关键组件,它们通过采集和处理车辆周围环境的信息,为自动驾驶系统提供必要的感知和决策依据。以下是对自动驾驶
    的头像 发表于 07-23 16:00 2300次阅读

    XV7181BB 陀螺仪传感器自动驾驶设备的应用

    输出、宽工作温度范围和优异的温度偏置稳定性,为自动驾驶设备各种复杂驾驶环境的稳定运行提供了强大的支持。其低功耗设计和内置的温度传感器、数
    的头像 发表于 06-13 15:23 481次阅读
    XV7181BB 陀螺仪<b class='flag-5'>传感器</b><b class='flag-5'>在</b><b class='flag-5'>自动驾驶</b>设备<b class='flag-5'>中</b>的应用

    揭秘自动驾驶:未来汽车的感官革命,究竟需要哪些超级传感器

    ,激光雷达技术受到极大关注,被誉为“激光雷达元年”,凸显了传感器自动驾驶的重要性。那么,自动驾驶
    的头像 发表于 05-31 09:14 592次阅读

    自动驾驶:揭秘高精度时间同步技术(一)

    本文重点探讨了高精度时间同步技术传感器融合的重要性。通过选择统一的时钟源和基于以太网的协议,确保多
    的头像 发表于 05-29 10:40 4976次阅读
    <b class='flag-5'>自动驾驶</b>:揭秘高精度时间同步<b class='flag-5'>技术</b>(一)

    康谋技术 |深入探讨:自动驾驶的相机标定技术

    随着自动驾驶技术的快速发展,多传感器的数据采集和融合可以显著提高系统的冗余度和容错性,进而保证决策的快速性和正确性。项目开发迭代过程
    的头像 发表于 04-17 17:08 900次阅读
    康谋<b class='flag-5'>技术</b> |深入探讨:<b class='flag-5'>自动驾驶</b><b class='flag-5'>中</b>的相机标定<b class='flag-5'>技术</b>

    未来已来,多传感器融合感知是自动驾驶破局的关键

    技术 ,摄像头和雷达等多传感器的探测数据 在前端(数据获取时)交互验证,让自动驾驶系统能感知到“看不见”的危险。 例如,反向车道有强远光灯干扰的情况下,当雷达子系统探测到潜在运动目标
    发表于 04-11 10:26