0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

机器学习算法的基础介绍

新机器视觉 来源:新机器视觉 作者:新机器视觉 2022-10-24 10:08 次阅读

现在,机器学习有很多算法。如此多的算法,可能对于初学者来说,是相当不堪重负的。今天,我们将简要介绍 10 种最流行的机器学习算法,这样你就可以适应这个激动人心的机器学习世界了!

01 线性回归

线性回归Linear Regression)可能是最流行的机器学习算法。线性回归就是要找一条直线,并且让这条直线尽可能地拟合散点图中的数据点。它试图通过将直线方程与该数据拟合来表示自变量(x 值)和数值结果(y 值)。然后就可以用这条线来预测未来的值!

这种算法最常用的技术是最小二乘法(Least of squares)。这个方法计算出最佳拟合线,以使得与直线上每个数据点的垂直距离最小。总距离是所有数据点的垂直距离(绿线)的平方和。其思想是通过最小化这个平方误差或距离来拟合模型。

c910945a-52d7-11ed-a3b6-dac502259ad0.jpg

例如,简单线性回归,它有一个自变量(x 轴)和一个因变量(y 轴)。

02 逻辑回归

逻辑回归(Logistic regression)与线性回归类似,但它是用于输出为二进制的情况(即,当结果只能有两个可能的值)。对最终输出的预测是一个非线性的 S 型函数,称为 logistic function, g()。

这个逻辑函数将中间结果值映射到结果变量 Y,其值范围从 0 到 1。然后,这些值可以解释为 Y 出现的概率。S 型逻辑函数的性质使得逻辑回归更适合用于分类任务。

逻辑回归曲线图,显示了通过考试的概率与学习时间的关系。

03 决策树

决策树(Decision Trees)可用于回归和分类任务。

在这一算法中,训练模型通过学习树表示(Tree representation)的决策规则来学习预测目标变量的值。树是由具有相应属性的节点组成的。

在每个节点上,我们根据可用的特征询问有关数据的问题。左右分支代表可能的答案。最终节点(即叶节点)对应于一个预测值。

每个特征的重要性是通过自顶向下方法确定的。节点越高,其属性就越重要。

c92943a6-52d7-11ed-a3b6-dac502259ad0.jpg

决定是否在餐厅等候的决策树示例。

04 朴素贝叶斯

朴素贝叶斯(Naive Bayes)是基于贝叶斯定理。它测量每个类的概率,每个类的条件概率给出 x 的值。这个算法用于分类问题,得到一个二进制“是 / 非”的结果。看看下面的方程式。

朴素贝叶斯分类器是一种流行的统计技术,可用于过滤垃圾邮件!

05 支持向量机(SVM)

支持向量机(Support Vector Machine,SVM)是一种用于分类问题的监督算法。支持向量机试图在数据点之间绘制两条线,它们之间的边距最大。为此,我们将数据项绘制为 n 维空间中的点,其中,n 是输入特征的数量。在此基础上,支持向量机找到一个最优边界,称为超平面(Hyperplane),它通过类标签将可能的输出进行最佳分离。

超平面与最近的类点之间的距离称为边距。最优超平面具有最大的边界,可以对点进行分类,从而使最近的数据点与这两个类之间的距离最大化。

c948c596-52d7-11ed-a3b6-dac502259ad0.jpg

例如,H1 没有将这两个类分开。但 H2 有,不过只有很小的边距。而 H3 以最大的边距将它们分开了。

06 K- 最近邻算法(KNN)

K- 最近邻算法(K-Nearest Neighbors,KNN)非常简单。KNN 通过在整个训练集中搜索 K 个最相似的实例,即 K 个邻居,并为所有这些 K 个实例分配一个公共输出变量,来对对象进行分类。

K 的选择很关键:较小的值可能会得到大量的噪声和不准确的结果,而较大的值是不可行的。它最常用于分类,但也适用于回归问题。

用于评估实例之间相似性的距离可以是欧几里得距离(Euclidean distance)、曼哈顿距离(Manhattan distance)或明氏距离(Minkowski distance)。欧几里得距离是两点之间的普通直线距离。它实际上是点坐标之差平方和的平方根。

c95d3b34-52d7-11ed-a3b6-dac502259ad0.jpg▲KNN 分类示例 07 K- 均值

K- 均值(K-means)是通过对数据集进行分类来聚类的。例如,这个算法可用于根据购买历史将用户分组。它在数据集中找到 K 个聚类。K- 均值用于无监督学习,因此,我们只需使用训练数据 X,以及我们想要识别的聚类数量 K。

该算法根据每个数据点的特征,将每个数据点迭代地分配给 K 个组中的一个组。它为每个 K- 聚类(称为质心)选择 K 个点。基于相似度,将新的数据点添加到具有最近质心的聚类中。这个过程一直持续到质心停止变化为止。


08 随机森林

随机森林(Random Forest)是一种非常流行的集成机器学习算法。这个算法的基本思想是,许多人的意见要比个人的意见更准确。在随机森林中,我们使用决策树集成(参见决策树)。

为了对新对象进行分类,我们从每个决策树中进行投票,并结合结果,然后根据多数投票做出最终决定。

c98c282c-52d7-11ed-a3b6-dac502259ad0.jpg

在训练过程中,每个决策树都是基于训练集的引导样本来构建的。

在分类过程中,输入实例的决定是根据多数投票做出的。

09 降维

由于我们今天能够捕获的数据量之大,机器学习问题变得更加复杂。这就意味着训练极其缓慢,而且很难找到一个好的解决方案。这一问题,通常被称为“维数灾难”(Curse of dimensionality)。

降维(Dimensionality reduction)试图在不丢失最重要信息的情况下,通过将特定的特征组合成更高层次的特征来解决这个问题。主成分分析(Principal Component Analysis,PCA)是最流行的降维技术。

主成分分析通过将数据集压缩到低维线或超平面 / 子空间来降低数据集的维数。这尽可能地保留了原始数据的显著特征。

c9c53fa4-52d7-11ed-a3b6-dac502259ad0.jpg

可以通过将所有数据点近似到一条直线来实现降维的示例。

10 人工神经网络(ANN)

人工神经网络(Artificial Neural Networks,ANN)可以处理大型复杂的机器学习任务。神经网络本质上是一组带有权值的边和节点组成的相互连接的层,称为神经元。在输入层和输出层之间,我们可以插入多个隐藏层。人工神经网络使用了两个隐藏层。除此之外,还需要处理深度学习

人工神经网络的工作原理与大脑的结构类似。一组神经元被赋予一个随机权重,以确定神经元如何处理输入数据。通过对输入数据训练神经网络来学习输入和输出之间的关系。在训练阶段,系统可以访问正确的答案。

如果网络不能准确识别输入,系统就会调整权重。经过充分的训练后,它将始终如一地识别出正确的模式。

c9d63610-52d7-11ed-a3b6-dac502259ad0.jpg

每个圆形节点表示一个人工神经元,箭头表示从一个人工神经元的输出到另一个人工神经元的输入的连接。

接下来是什么?现在,你已经了解了最流行的机器学习算法的基础介绍。你已经准备好学习更为复杂的概念,甚至可以通过深入的动手实践来实现它们。如果你想了解如何实现这些算法,可以参考 Educative 出品的 Grokking Data Science 课程,该课程将这些激动人心的理论应用于清晰、真实的应用程序。

审核编辑:彭静
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 数据
    +关注

    关注

    8

    文章

    7015

    浏览量

    88984
  • 模型
    +关注

    关注

    1

    文章

    3237

    浏览量

    48824
  • 机器学习
    +关注

    关注

    66

    文章

    8414

    浏览量

    132602

原文标题:机器学习必知必会 10 大算法!

文章出处:【微信号:vision263com,微信公众号:新机器视觉】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    机器学习算法概念介绍及选用建议

    在从事数据科学工作的时候,经常会遇到为具体问题选择最合适算法的问题。虽然有很多有关机器学习算法的文章详细介绍了相关的
    的头像 发表于 01-14 13:49 3738次阅读
    <b class='flag-5'>机器</b><b class='flag-5'>学习</b><b class='flag-5'>算法</b>概念<b class='flag-5'>介绍</b>及选用建议

    机器学习算法分享

    机器学习算法(1)——Logistic Regression
    发表于 06-09 13:30

    迁移学习

    上课时间安排2022年05月27日 — 2022年05月30日No.1 第一天一、机器学习简介与经典机器学习算法
    发表于 04-21 15:15

    机器学习简介与经典机器学习算法人才培养

    上课时间安排:2022年05月27日 — 2022年05月30日No.1 第一天一、机器学习简介与经典机器学习算法
    发表于 04-28 18:56

    机器学习算法介绍算法优缺点的分析

    机器学习算法数不胜数,要想找到一个合适的算法并不是一件简单的事情。通常在对精度要求较高的情况下,最好的方法便是通过交叉验证来对各个算法一一尝
    发表于 09-19 15:17 7次下载
    <b class='flag-5'>机器</b><b class='flag-5'>学习</b><b class='flag-5'>算法</b>的<b class='flag-5'>介绍</b>及<b class='flag-5'>算法</b>优缺点的分析

    Spark机器学习库的各种机器学习算法

    本文将简要介绍Spark机器学习库(Spark MLlibs APIs)的各种机器学习算法,主要
    发表于 09-28 16:44 1次下载

    朴素贝叶斯等常见机器学习算法介绍及其优缺点比较

    偏差和方差与模型复杂度的关系使用下图更加明了: 当模型复杂度上升的时候,偏差会逐渐变小,而方差会逐渐变大。 常见算法优缺点 1.朴素贝叶斯 朴素贝叶斯属于生成式模型(关于生成模型和判别式模型,主要
    发表于 09-29 16:18 7次下载
    朴素贝叶斯等常见<b class='flag-5'>机器</b><b class='flag-5'>学习</b><b class='flag-5'>算法</b>的<b class='flag-5'>介绍</b>及其优缺点比较

    人工智能学习 迁移学习实战进阶

    上课时间安排: 2022年05月27日 — 2022年05月30日 No.1 第一天 一、机器学习简介与经典机器学习算法
    的头像 发表于 04-28 17:13 1583次阅读
    人工智能<b class='flag-5'>学习</b> 迁移<b class='flag-5'>学习</b>实战进阶

    机器学习算法介绍

    哲学要回答的基本问题是从哪里来、我是谁、到哪里去,寻找答案的过程或许可以借鉴机器学习的套路:组织数据->挖掘知识->预测未来。组织数据即为设计特征,生成满足特定格式要求的样本,挖掘知识即建模,而预测未来就是对模型的应用。
    的头像 发表于 06-05 14:17 950次阅读

    机器学习算法汇总 机器学习算法分类 机器学习算法模型

    是解决具体问题的一系列步骤,机器学习算法被设计用于从大量的数据中自动学习并不断改进自身的性能。本文将为大家介绍
    的头像 发表于 08-17 16:11 1102次阅读

    机器学习算法总结 机器学习算法是什么 机器学习算法优缺点

    机器学习算法总结 机器学习算法是什么?机器
    的头像 发表于 08-17 16:11 1912次阅读

    机器学习算法入门 机器学习算法介绍 机器学习算法对比

    机器学习算法入门 机器学习算法介绍
    的头像 发表于 08-17 16:27 948次阅读

    机器学习vsm算法

    (VSM)算法计算相似性。本文将从以下几个方面介绍机器学习vsm算法。 1、向量空间模型 向量空间模型是一种常见的文本表示方法,根据文本的词
    的头像 发表于 08-17 16:29 867次阅读

    机器学习有哪些算法机器学习分类算法有哪些?机器学习预判有哪些算法

    许多不同的类型和应用。根据机器学习的任务类型,可以将其分为几种不同的算法类型。本文将介绍机器学习
    的头像 发表于 08-17 16:30 1990次阅读

    常用的十大机器学习算法介绍

    Boosting是一种集成技术,尝试从多个弱分类器创建强分类器。这是通过从训练数据构建模型,然后创建第二个模型来尝试纠正第一个模型中的错误来完成的。添加模型,直到完美预测训练集或添加最大数量的模型为止。
    发表于 11-20 14:49 475次阅读
    常用的十大<b class='flag-5'>机器</b><b class='flag-5'>学习</b><b class='flag-5'>算法</b><b class='flag-5'>介绍</b>