0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

嵌入式的RSA非对称加密算法

汽车电子技术 来源:嵌入式系统 作者: 嵌入式系统 2023-01-20 11:17 次阅读

1、对称加密算法

对称加密算法是应用较早的加密算法,数据发送方将明文和密钥经加密算法处理,使其变成密文发送出去;接收方收到密文后,使用和加密算法相同的密钥进行逆算法解密,还原出明文。在对称加密算法中,使用的密钥只有一个,收发双方使用相同的密钥对数据进行加密或解密。

微信截图_20230105161930.png

双方都必须保管好密钥,任一方的密钥泄露,都会导致加密信息不安全;尤其是双方协商更换密钥过程中,密钥会出现在传输过程中,严重影响数据的安全性。

对称加密算法常用的AES可以参考[ 嵌入式算法6---AES加密/解密算法 ]

2、非对称加密算法

和对称加密算法最大的区别是,非对称加密算法需要两个密钥,公开密钥(public key 简称公钥)和私有密钥(private key 简称私钥),且公钥与私钥是互相关联的一对。使用公钥对数据进行加密,只有用对应的私钥才能解密,私钥加密签名也只有公钥能解密验签。

微信截图_20230105161930.png

非对称加密算法实现机密信息交换的基本过程:

1、甲方生成一对密钥并将公钥公开,私钥保密

2、乙方使用甲方的提供的公钥,对机密信息加密后再发送给甲方;甲方使用自己私钥对加密后的信息进行解密

3、甲方也可以使用自己的私钥对机密信息进行签名后再发送给乙方,乙方用甲方的提供公钥对甲方发来的密文进行验签

非对称加密算法的特点:

1、公钥公开,私钥私藏,无需双方传输密钥协商,所以安全性比对称加密算法更高

2、非对称加密的算法复杂,运算速度比对称加密解密的速度慢很多

3、一般情况下使用非对称加密保护对称加密的密钥,密钥协商后使用对称加密进行通信

4、最佳实现是双方各自保存自己的私钥,使用对方的公钥加密数据传输

3、RSA算法与密钥

非对称加密算法中最常用的当属 RSA ,其算法本身基于一个简单的数论知识,给出两个素数,很容易将它们相乘,然而给出它们的乘积,想得到这两个素数就显得尤为困难。具体的私钥与公钥生成原理和加密、解密过程,不是本文关注的重点。

私钥和公钥的生成,可以借助mbedtls源码或openSSL工具生成,举例如下:

1、安装openSSL,下载地址

https://www.openssl.org/

2、安装后进入openSSL命令行界面,使用命令生成RSA2048的私钥,存入private.key文件

OpenSSL>genrsa -out private.key 2048

3、基于公钥生成私钥,存入文件public.key

OpenSSL> rsa -in private.key -pubout -out public.key

4、有些算法库采用传入指数、模数方式进行加解密,而前面生成的公私钥是PEM格式,需要变成Exponent、Modulus形式,就可以使用以下工具在线转换。

https://www.oren.net.cn/rsa/info.html

5、关于mbedtls应用,可以参考[ mbedtls 基础及其应用 ],该开源库针对嵌入式系统,且囊括了很多常用的算法。

4、源码

以下是RSA2048的C源码和验证范例,基于Qt测试,也可以结合硬件性能改为RSA1024,移植时注意适配形如 portable_***的三个API

/************************************/
//关注微信公众号  嵌入式系统
/************************************/
//rsa.h
#include "stdlib.h"

#define RSA_ENCODE_LEN  (2048/8)   //RSA2048即256字节,可以视硬件情况改为1024

typedef unsigned char uint8_t;
typedef unsigned short int uint16_t;
typedef unsigned int  uint32_t;

#define BI_MAXLEN 130
#define DEC 10
#define HEX 16

#define CARRYOVER  0x10000
#define CARRYLAST   0xFFFF

typedef struct
{
    uint32_t m_nLength;    //大数在0x1 00 00 00 00进制下的长度
    uint16_t m_ulValue[BI_MAXLEN];    //用数组记录大数在0x100000000进制下每一位的值
} CBigInt;


//rsa.c
#include "rsa.h"
#include "time.h"

/******************* 适配API *******************/
#define portable_malloc  malloc
#define portable_free    free

//随机数种子源
uint32_t portable_rand_seed(void)
{
    time_t timestamp;
    time(×tamp);
    return timestamp;
}
/******************* 适配API *******************/

/*****************************************************************
基本操作与运算
Init, 构造大数对象并初始化为零
Mov,赋值运算,可赋值为大数或普通整数,可重载为运算符“=”
Cmp,比较运算,可重载为运算符“==”、“!=”、“>=”、“<=”等
Add,加,求大数与大数或大数与普通整数的和,可重载为运算符“+”
Sub,减,求大数与大数或大数与普通整数的差,可重载为运算符“-”
Mul,乘,求大数与大数或大数与普通整数的积,可重载为运算符“*”
Div,除,求大数与大数或大数与普通整数的商,可重载为运算符“/”
Mod,模,求大数与大数或大数与普通整数的模,可重载为运算符“%”
*****************************************************************/
static CBigInt *Mov_Big_Long(CBigInt *X, uint32_t A);
static CBigInt *Mov_Big_Big(CBigInt *X, CBigInt *A);
static CBigInt *Add_Big_Big(CBigInt *X, CBigInt *A);
static CBigInt *Sub_Big_Big(CBigInt *X, CBigInt *A);
static CBigInt *Mul_Big_Big(CBigInt *X, CBigInt *A);
static CBigInt *Div_Big_Big(CBigInt *X, CBigInt *A);
static CBigInt *Mod_Big_Big(CBigInt *X, CBigInt *A);
static CBigInt *Add_Big_Long(CBigInt *X, uint32_t A);
static CBigInt *Sub_Big_Long(CBigInt *X, uint32_t A);
static CBigInt *Mul_Big_Long(CBigInt *X, uint32_t A);
static CBigInt *Div_Big_Long(CBigInt *X, uint32_t A);
static uint32_t Mod_Big_Long(CBigInt *N, uint32_t A);
static int Cmp(CBigInt *N, CBigInt *A);

/*****************************************************************
输入输出
Get,从字符串按10进制或16进制格式输入到大数
Put,将大数按10进制或16进制格式输出到字符串
*****************************************************************/
static CBigInt *Get(CBigInt *N, char *str, uint32_t system);
static char *Put(CBigInt *N, uint32_t system);

/*****************************************************************
RSA相关运算
Rab,拉宾米勒算法进行素数测试
Euc,欧几里德算法求解同余方程
RsaTrans,反复平方算法进行幂模运算
GetPrime,产生指定长度的随机大素数
*****************************************************************/
static int Rab(CBigInt *N);
static CBigInt *Euc(CBigInt *X, CBigInt *A);
static CBigInt *RsaTrans(CBigInt *X, CBigInt *A, CBigInt *B);
static CBigInt *GetPrime(CBigInt *X, int bits);


/*****************************************************************
大数运算库源文件:BigInt.c
说明:适用于C,linux系统 1024位RSA运算
*****************************************************************/
//小素数表
const static int PrimeTable[550] =
{
    3,     5,     7,     11,   13,   17,   19,   23,   29,   31,    37,   41,   43,   47,   53,   59,   61,   67,   71,   73,
    79,   83,   89,   97,   101,   103,   107,   109,   113,   127,    131,   137,   139,   149,   151,   157,   163,   167,   173,   179,
    181,   191,   193,   197,   199,   211,   223,   227,   229,   233,    239,   241,   251,   257,   263,   269,   271,   277,   281,   283,
    293,   307,   311,   313,   317,   331,   337,   347,   349,   353,    359,   367,   373,   379,   383,   389,   397,   401,   409,   419,
    421,   431,   433,   439,   443,   449,   457,   461,   463,   467,    479,   487,   491,   499,   503,   509,   521,   523,   541,   547,
    557,   563,   569,   571,   577,   587,   593,   599,   601,   607,    613,   617,   619,   631,   641,   643,   647,   653,   659,   661,
    673,   677,   683,   691,   701,   709,   719,   727,   733,   739,    743,   751,   757,   761,   769,   773,   787,   797,   809,   811,
    821,   823,   827,   829,   839,   853,   857,   859,   863,   877,    881,   883,   887,   907,   911,   919,   929,   937,   941,   947,
    953,   967,   971,   977,   983,   991,   997,   1009, 1013, 1019,    1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069, 1087,
    1091, 1093, 1097, 1103, 1109, 1117, 1123, 1129, 1151, 1153,    1163, 1171, 1181, 1187, 1193, 1201, 1213, 1217, 1223, 1229,
    1231, 1237, 1249, 1259, 1277, 1279, 1283, 1289, 1291, 1297,    1301, 1303, 1307, 1319, 1321, 1327, 1361, 1367, 1373, 1381,
    1399, 1409, 1423, 1427, 1429, 1433, 1439, 1447, 1451, 1453,    1459, 1471, 1481, 1483, 1487, 1489, 1493, 1499, 1511, 1523,
    1531, 1543, 1549, 1553, 1559, 1567, 1571, 1579, 1583, 1597,    1601, 1607, 1609, 1613, 1619, 1621, 1627, 1637, 1657, 1663,
    1667, 1669, 1693, 1697, 1699, 1709, 1721, 1723, 1733, 1741,    1747, 1753, 1759, 1777, 1783, 1787, 1789, 1801, 1811, 1823,
    1831, 1847, 1861, 1867, 1871, 1873, 1877, 1879, 1889, 1901,    1907, 1913, 1931, 1933, 1949, 1951, 1973, 1979, 1987, 1993,
    1997, 1999, 2003, 2011, 2017, 2027, 2029, 2039, 2053, 2063,    2069, 2081, 2083, 2087, 2089, 2099, 2111, 2113, 2129, 2131,
    2137, 2141, 2143, 2153, 2161, 2179, 2203, 2207, 2213, 2221,    2237, 2239, 2243, 2251, 2267, 2269, 2273, 2281, 2287, 2293,
    2297, 2309, 2311, 2333, 2339, 2341, 2347, 2351, 2357, 2371,    2377, 2381, 2383, 2389, 2393, 2399, 2411, 2417, 2423, 2437,
    2441, 2447, 2459, 2467, 2473, 2477, 2503, 2521, 2531, 2539,    2543, 2549, 2551, 2557, 2579, 2591, 2593, 2609, 2617, 2621,
    2633, 2647, 2657, 2659, 2663, 2671, 2677, 2683, 2687, 2689,    2693, 2699, 2707, 2711, 2713, 2719, 2729, 2731, 2741, 2749,
    2753, 2767, 2777, 2789, 2791, 2797, 2801, 2803, 2819, 2833,    2837, 2843, 2851, 2857, 2861, 2879, 2887, 2897, 2903, 2909,
    2917, 2927, 2939, 2953, 2957, 2963, 2969, 2971, 2999, 3001,    3011, 3019, 3023, 3037, 3041, 3049, 3061, 3067, 3079, 3083,
    3089, 3109, 3119, 3121, 3137, 3163, 3167, 3169, 3181, 3187,    3191, 3203, 3209, 3217, 3221, 3229, 3251, 3253, 3257, 3259,
    3271, 3299, 3301, 3307, 3313, 3319, 3323, 3329, 3331, 3343,    3347, 3359, 3361, 3371, 3373, 3389, 3391, 3407, 3413, 3433,
    3449, 3457, 3461, 3463, 3467, 3469, 3491, 3499, 3511, 3517,    3527, 3529, 3533, 3539, 3541, 3547, 3557, 3559, 3571, 3581,
    3583, 3593, 3607, 3613, 3617, 3623, 3631, 3637, 3643, 3659,    3671, 3673, 3677, 3691, 3697, 3701, 3709, 3719, 3727, 3733,
    3739, 3761, 3767, 3769, 3779, 3793, 3797, 3803, 3821, 3823,    3833, 3847, 3851, 3853, 3863, 3877, 3881, 3889, 3907, 3911,
    3917, 3919, 3923, 3929, 3931, 3943, 3947, 3967, 3989, 4001
};

/****************************************************************************************
大数比较
调用方式:Cmp(N,A)
返回值:若NA返回1
****************************************************************************************/
static int Cmp(CBigInt *N, CBigInt *A)
{
    int i;
    if(N->m_nLength > A->m_nLength)
    {
        return 1;
    }
    if(N->m_nLength < A->m_nLength)
    {
        return -1;
    }
    for(i = N->m_nLength - 1; i >= 0; i--)
    {
        if(N->m_ulValue[i] > A->m_ulValue[i])
        {
            return 1;
        }
        if(N->m_ulValue[i] < A->m_ulValue[i])
        {
            return -1;
        }
    }
    return 0;
}

/****************************************************************************************
大数赋值
调用方式:__Mov_Big_Big(A)
返回值:N,被赋值为A
****************************************************************************************/
static CBigInt *Mov_Big_Big(CBigInt *X, CBigInt *A)
{
    memcpy(X, A, sizeof(CBigInt));
    return X;
}

static CBigInt *Mov_Big_Long(CBigInt *N, uint32_t A)
{
    int i;
    if(A > CARRYLAST)
    {
        N->m_nLength = 2;
        N->m_ulValue[1] = (uint16_t)(A >> 16);
        N->m_ulValue[0] = (uint16_t)A;
    }
    else
    {
        N->m_nLength = 1;
        N->m_ulValue[0] = (uint16_t)A;
    }
    memset((unsigned char*)&N->m_ulValue[N->m_nLength], 0, sizeof(uint16_t) * (BI_MAXLEN - N->m_nLength));
    return N;
}

/****************************************************************************************
大数相加
调用形式:Add_Big_Big(X,A)
返回值:X=X+A
****************************************************************************************/
static CBigInt *Add_Big_Big(CBigInt *X, CBigInt *A)
{
    uint32_t i;
    uint16_t carry = 0;
    uint32_t sum = 0;
    if(X->m_nLength < A->m_nLength)
    {
        X->m_nLength = A->m_nLength;
    }
    for(i = 0; i < X->m_nLength; i++)
    {
        sum = A->m_ulValue[i];
        sum = sum + X->m_ulValue[i] + carry;
        X->m_ulValue[i] = (uint16_t)sum;
        carry = (uint16_t)(sum >> 16);
    }
    X->m_ulValue[X->m_nLength] = carry;
    X->m_nLength += carry;
    return X;
}

static CBigInt *Add_Big_Long(CBigInt *X, uint32_t A)
{
    uint32_t sum;
    sum = X->m_ulValue[0];
    sum += A;
    X->m_ulValue[0] = (uint16_t)sum;
    if(sum > CARRYLAST)
    {
        uint32_t i = 1;
        while(X->m_ulValue[i] == CARRYLAST)
        {
            X->m_ulValue[i] = 0;
            i++;
        }
        X->m_ulValue[i]++;
        if(X->m_nLength == i)
        {
            X->m_nLength++;
        }
    }
    return X;
}

/****************************************************************************************
大数相减
调用形式:Sub_Big_Big(X,A)
返回值:X=X-A
****************************************************************************************/
static CBigInt *Sub_Big_Big(CBigInt *X, CBigInt *A)
{
    if(Cmp(X, A) <= 0)
    {
        memset(X, 0, sizeof(CBigInt));
        return X;
    }
    else
    {
        uint16_t carry = 0;
        uint32_t num;
        uint32_t i;
        for(i = 0; i < X->m_nLength; i++)
        {
            if((X->m_ulValue[i] > A->m_ulValue[i]) || ((X->m_ulValue[i] == A->m_ulValue[i]) && (carry == 0)))
            {
                X->m_ulValue[i] = X->m_ulValue[i] - carry - A->m_ulValue[i];
                carry = 0;
            }
            else
            {
                num = CARRYOVER + X->m_ulValue[i];
                X->m_ulValue[i] = (uint32_t)(num - carry - A->m_ulValue[i]);
                carry = 1;
            }
        }
        while(X->m_ulValue[X->m_nLength - 1] == 0)
        {
            X->m_nLength--;
        }
        return X;
    }
}

static CBigInt *Sub_Big_Long(CBigInt *X, uint32_t A)
{
    if(X->m_ulValue[0] >= A)
    {
        X->m_ulValue[0] -= A;
        return X;
    }
    if(X->m_nLength == 1)
    {
        memset(X, 0, sizeof(CBigInt));
        return X;
    }
    else
    {
        uint32_t num = CARRYOVER + X->m_ulValue[0];
        int i = 1;
        X->m_ulValue[0] = (uint16_t)(num - A);
        while(X->m_ulValue[i] == 0)
        {
            X->m_ulValue[i] = CARRYLAST;
            i++;
        }
        X->m_ulValue[i]--;
        if(X->m_ulValue[i] == 0)
        {
            X->m_nLength--;
        }
        return X;
    }
}

/****************************************************************************************
大数相乘
调用形式:Mul_Big_Big(N,A)
返回值:X=N*A
    A a 0
    N c d
        0     d*0
        1   c*0
                    d*a
        2 c*a

****************************************************************************************/
static CBigInt *Mul_Big_Big(CBigInt *X, CBigInt *A)
{
    if(A->m_nLength == 1)
    {
        return Mul_Big_Long(X, A->m_ulValue[0]);
    }
    else
    {
        uint32_t sum, mul = 0, carry = 0;
        uint32_t i, j;
        CBigInt N = {0};
        memcpy(&N, X, sizeof(CBigInt));
        memset(X, 0, sizeof(CBigInt));
        X->m_nLength = N.m_nLength + A->m_nLength - 1;
        for(i = 0; i < X->m_nLength; i++)
        {
            sum = carry;
            carry = 0;
            for(j = 0; j < A->m_nLength; j++)
            {
                if(((i - j) >= 0) && ((i - j) < N.m_nLength))
                {
                    mul = N.m_ulValue[i - j];
                    mul *= A->m_ulValue[j];
                    carry += mul >> 16;
                    mul = mul & CARRYLAST;
                    sum += mul;
                }
            }
            carry += sum >> 16;
            X->m_ulValue[i] = (uint16_t)sum;
        }
        if(carry)
        {
            X->m_nLength++;
            X->m_ulValue[X->m_nLength - 1] = (uint16_t)carry;
        }
        return X;
    }
}

static CBigInt *Mul_Big_Long(CBigInt *X, uint32_t A)
{
    uint32_t mul;
    uint32_t carry = 0;
    uint32_t i;
    for(i = 0; i < X->m_nLength; i++)
    {
        mul = X->m_ulValue[i];
        mul = mul * A + carry;
        X->m_ulValue[i] = (uint16_t)mul;
        carry = (uint16_t)(mul >> 16);
    }
    if(carry)
    {
        X->m_nLength++;
        X->m_ulValue[X->m_nLength - 1] = carry;
    }
    return X;
}

/****************************************************************************************
大数相除
调用形式:Div_Big_Big(N,A)
返回值:X=N/A
****************************************************************************************/
static CBigInt *Div_Big_Big(CBigInt *X, CBigInt *A)
{
    CBigInt Y = {0}, Z = {0}, T;
    if(A->m_nLength == 1)
    {
        return Div_Big_Long(X, A->m_ulValue[0]);
    }
    else
    {
        uint32_t i, len;
        uint32_t num, div;
        memcpy(&Y, X, sizeof(CBigInt));
        while(Cmp(&Y, A) >= 0)
        {
            div = Y.m_ulValue[Y.m_nLength - 1];
            num = A->m_ulValue[A->m_nLength - 1];
            len = Y.m_nLength - A->m_nLength;
            if((div == num) && (len == 0))
            {
                Add_Big_Long(X, 1);
                break;
            }
            if((div <= num) && len)
            {
                len--;
                div = (div << 16) + Y.m_ulValue[Y.m_nLength - 2];
            }
            div = div / (num + 1);
            Mov_Big_Long(&Z, div);
            if(len)
            {
                Z.m_nLength += len;
                for(i = Z.m_nLength - 1; i >= len; i--)
                {
                    Z.m_ulValue[i] = Z.m_ulValue[i - len];
                }
                for(i = 0; i < len; i++)
                {
                    Z.m_ulValue[i] = 0;
                }
            }
            Add_Big_Big(X, &Z);
            memcpy(&T, A, sizeof(CBigInt));
            Mul_Big_Big(&T, &Z);
            Sub_Big_Big(&Y, &T);
        }
        return X;
    }
}
static CBigInt *Div_Big_Long(CBigInt *X, uint32_t A)
{
    if(X->m_nLength == 1)
    {
        X->m_ulValue[0] = X->m_ulValue[0] / A;
        return X;
    }
    else
    {
        uint32_t div, mul;
        uint32_t carry = 0;
        int i;
        for(i = X->m_nLength - 1; i >= 0; i--)
        {
            div = carry;
            div = (div << 16) + X->m_ulValue[i];
            X->m_ulValue[i] = (uint16_t)(div / A);
            mul = (div / A) * A;
            carry = (uint16_t)(div - mul);
        }
        if(X->m_ulValue[X->m_nLength - 1] == 0)
        {
            X->m_nLength--;
        }
        return X;
    }
}

/****************************************************************************************
大数求模
调用形式:Mod_Big_Big(N,A)
返回值:X=N%A
****************************************************************************************/
static CBigInt *Mod_Big_Big(CBigInt *X, CBigInt *A)
{
    CBigInt Y = {0}, Z;
    uint32_t div, num;
    uint32_t carry = 0;
    uint32_t i, len;
    while(Cmp(X, A) >= 0)
    {
        div = X->m_ulValue[X->m_nLength - 1];
        num = A->m_ulValue[A->m_nLength - 1];
        len = X->m_nLength - A->m_nLength;
        if((div == num) && (len == 0))
        {
            Sub_Big_Big(X, A);
            break;
        }
        if((div <= num) && len)
        {
            len--;
            div = (div << 16) + X->m_ulValue[X->m_nLength - 2];
        }
        div = div / (num + 1);
        Mov_Big_Long(&Y, div);
        memcpy(&Z, A, sizeof(CBigInt));
        Mul_Big_Big(&Z, &Y);
        memcpy(&Y, &Z, sizeof(CBigInt));
        if(len)
        {
            Y.m_nLength += len;
            for(i = Y.m_nLength - 1; i >= len; i--)
            {
                Y.m_ulValue[i] = Y.m_ulValue[i - len];
            }
            for(i = 0; i < len; i++)
            {
                Y.m_ulValue[i] = 0;
            }
        }
        Sub_Big_Big(X, &Y);
    }
    return X;
}

static uint32_t Mod_Big_Long(CBigInt *N, uint32_t A)
{
    if(N->m_nLength == 1)
    {
        return(N->m_ulValue[0] % A);
    }
    else
    {
        uint32_t div;
        uint32_t carry = 0;
        int i;
        for(i = N->m_nLength - 1; i >= 0; i--)
        {
            div = N->m_ulValue[i];
            div += carry * CARRYOVER;
            carry = (uint16_t)(div % A);
        }
        return carry;
    }
}

/****************************************************************************************
从字符串按10进制或16进制格式输入到大数
调用格式:Get(N,str,sys)
返回值:N被赋值为相应大数
sys暂时只能为10或16
****************************************************************************************/
static CBigInt *Get(CBigInt *N, char *s, uint32_t system)
{
    int i;
    int len = strlen(s), k;
    memset(N, 0, sizeof(CBigInt));
    N->m_nLength = 1;
    for(i = 0; i < len; i++)
    {
        Mul_Big_Long(N, system);
        if((s[i] >= '0') && (s[i] <= '9'))
        {
            k = s[i] - 48;
        }
        else if((s[i] >= 'A') && (s[i] <= 'F'))
        {
            k = s[i] - 55;
        }
        else if((s[i] >= 'a') && (s[i] <= 'f'))
        {
            k = s[i] - 87;
        }
        else
        {
            k = 0;
        }
        Add_Big_Long(N, k);
    }
    return N;
}
static CBigInt *GetHex(CBigInt *N, unsigned char *s, unsigned short len, uint32_t system)
{
    int i, j;
    unsigned char *p = (unsigned char*)N->m_ulValue;
    memset(N, 0, sizeof(CBigInt));
    N->m_nLength = 1;
    for(i = len - 1, j = 0; i >= 0; i--, j++)
    {
        p[j] = s[i];
    }
    i = len % 2;
    if(i > 0)
    {
        N->m_nLength = len / 2 + 1;
    }
    else
    {
        N->m_nLength = len / 2;
    }
    return N;
}
/****************************************************************************************
将大数按10进制或16进制格式输出为字符串
调用格式:Put(N,str,sys)
返回值:无,参数str被赋值为N的sys进制字符串
sys暂时只能为10或16
****************************************************************************************/
static char *Put(CBigInt *N, uint32_t system)
{
    char t[17] = "0123456789ABCDEF";
    int i, a;
    static char s[2048];

    if((N->m_nLength == 1) && (N->m_ulValue[0] == 0))
    {
        return NULL;
    }
    else
    {
        CBigInt X = {0};
        memcpy(&X, N, sizeof(CBigInt));
        memset(s, 0, 2048);
        for(i = 2046; X.m_ulValue[X.m_nLength - 1] > 0 && i > 0; i--)
        {
            a = Mod_Big_Long(&X, system);
            s[i] = t[a];
            Div_Big_Long(&X, system);
        }
        if(i % 2 == 0)
        {
            return &s[i + 1];
        }
        else
        {
            s[i] = '0';
            return &s[i];
        }
    }
}

static void PutHex(CBigInt *N, uint8_t *out, uint16_t *len)
{
    int i, j, size;
    if((N->m_nLength == 1) && (N->m_ulValue[0] == 0))
    {
        return;
    }
    size = N->m_nLength * sizeof(N->m_ulValue[0]);
    for(i = size - 1, j = 0; i >= 0; i--, j++)
    {
        out[j] = ((uint8_t*)N->m_ulValue)[i];
    }
    *len = size;
}

/****************************************************************************************
求不定方程ax-by=1的最小整数解
调用方式:Euc(N,A)
返回值:X,满足:NX mod A=1
****************************************************************************************/
static CBigInt *Euc(CBigInt *X, CBigInt *A)
{
    CBigInt M = {0}, E = {0}, N = {0}, Y = {0}, I = {0}, J = {0};
    int x, y;
    memcpy(&E, X, sizeof(CBigInt));
    memcpy(&M, A, sizeof(CBigInt));
    Mov_Big_Long(X, 0);
    Mov_Big_Long(&Y, 1);
    x = y = 1;
    while((E.m_nLength != 1) || (E.m_ulValue[0] != 0))
    {
        memcpy(&I, &M, sizeof(CBigInt));
        Div_Big_Big(&I, &E);
        memcpy(&J, &M, sizeof(CBigInt));
        Mod_Big_Big(&J, &E);
        memcpy(&M, &E, sizeof(CBigInt));
        memcpy(&E, &J, sizeof(CBigInt));
        memcpy(&J, &Y, sizeof(CBigInt));
        Mul_Big_Big(&Y, &I);
        if(x == y)
        {
            if(Cmp(X, &Y) >= 0)
            {
                Sub_Big_Big(&Y, X);
            }
            else
            {
                Sub_Big_Big(&Y, X);
                y = 0;
            }
        }
        else
        {
            Add_Big_Big(&Y, X);
            x = 1 - x;
            y = 1 - y;
        }
        memcpy(X, &J, sizeof(CBigInt));
    }
    if(x == 0)
    {
        Sub_Big_Big(X, A);
    }
    return X;
}

/****************************************************************************************
求乘方的模
调用方式:RsaTrans(N,A,B)
返回值:X=N^A MOD B
****************************************************************************************/
static CBigInt *RsaTrans(CBigInt *X, CBigInt *A, CBigInt *B)
{
    CBigInt N = {0}, Y = {0}, Z;
    int i, j, k;
    uint32_t n;
    uint32_t num;
    k = A->m_nLength * 16 - 16;
    num = A->m_ulValue[A->m_nLength - 1];
    while(num)
    {
        num = num >> 1;
        k++;
    }
    memcpy(&N, X, sizeof(CBigInt));
    for(i = k - 2; i >= 0; i--)
    {
        memcpy(&Y, X, sizeof(CBigInt));
        Mul_Big_Long(&Y, X->m_ulValue[X->m_nLength - 1]);
        Mod_Big_Big(&Y, B);
        for(n = 1; n < X->m_nLength; n++)
        {
            for(j = Y.m_nLength; j > 0; j--)
            {
                Y.m_ulValue[j] = Y.m_ulValue[j - 1];
            }
            Y.m_ulValue[0] = 0;
            Y.m_nLength++;
            memcpy(&Z, X, sizeof(CBigInt));
            Mul_Big_Long(&Z, X->m_ulValue[X->m_nLength - n - 1]);
            Add_Big_Big(&Y, &Z);
            Mod_Big_Big(&Y, B);
        }
        memcpy(X, &Y, sizeof(CBigInt));
        if((A->m_ulValue[i >> 4] >> (i & 15)) & 1)
        {
            memcpy(&Y, &N, sizeof(CBigInt));
            Mul_Big_Long(&Y, X->m_ulValue[X->m_nLength - 1]);
            Mod_Big_Big(&Y, B);
            for(n = 1; n < X->m_nLength; n++)
            {
                for(j = Y.m_nLength; j > 0; j--)
                {
                    Y.m_ulValue[j] = Y.m_ulValue[j - 1];
                }
                Y.m_ulValue[0] = 0;
                Y.m_nLength++;
                memcpy(&Z, &N, sizeof(CBigInt));
                Mul_Big_Long(&Z, X->m_ulValue[X->m_nLength - n - 1]);
                Add_Big_Big(&Y, &Z);
                Mod_Big_Big(&Y, B);
            }
            memcpy(X, &Y, sizeof(CBigInt));
        }
    }
    return X;
}

/****************************************************************************************
拉宾米勒算法测试素数
调用方式:Rab(N)
返回值:若N为素数,返回1,否则返回0
****************************************************************************************/
static int Rab(CBigInt *N)
{
    CBigInt S = {0}, A = {0}, I = {0}, K = {0};
    uint32_t i, j, pass;
    for(i = 0; i < 550; i++)
    {
        if(Mod_Big_Long(N, PrimeTable[i]) == 0)
        {
            return 0;
        }
    }
    memcpy(&K, N, sizeof(CBigInt));
    K.m_ulValue[0]--;
    for(i = 0; i < 5; i++)
    {
        pass = 0;
        Mov_Big_Long(&A, rand()*rand());
        memcpy(&S, &K, sizeof(CBigInt));
        while((S.m_ulValue[0] & 1) == 0)
        {
            for(j = 0; j < S.m_nLength; j++)
            {
                S.m_ulValue[j] = S.m_ulValue[j] >> 1;
                if(S.m_ulValue[j + 1] & 1)
                {
                    S.m_ulValue[j] = S.m_ulValue[j] | 0x8000;
                }
            }
            if(S.m_ulValue[S.m_nLength - 1] == 0)
            {
                S.m_nLength--;
            }
            memcpy(&I, &A, sizeof(CBigInt));
            RsaTrans(&I, &S, N);
            if(Cmp(&I, &K) == 0)
            {
                pass = 1;
                break;
            }
        }
        if((I.m_nLength == 1) && (I.m_ulValue[0] == 1))
        {
            pass = 1;
        }
        if(pass == 0)
        {
            return 0;
        }
    }
    return 1;
}

/****************************************************************************************
产生随机素数
调用方法:GetPrime(N,bits)
返回值:N,被赋值为一个bits位(0x100000000进制长度)的素数
****************************************************************************************/
static CBigInt *GetPrime(CBigInt *N, int bits)
{
    uint32_t i;
    CBigInt S = {0}, A = {0}, I = {0}, K = {0};

    memset(N, 0, sizeof(CBigInt));
    N->m_nLength = bits;
begin:
    srand(portable_rand_seed());
    for(i = 0; i < N->m_nLength; i++)
    {
        N->m_ulValue[i] = rand() * 0x100 + rand();
    }
    N->m_ulValue[0] = N->m_ulValue[0] | 1;
    for(i = N->m_nLength - 1; i > 0; i--)
    {
        N->m_ulValue[i] = N->m_ulValue[i] << 1;
        if(N->m_ulValue[i - 1] & 0x8000)
        {
            N->m_ulValue[i]++;
        }
    }
    N->m_ulValue[0] = N->m_ulValue[0] << 1;
    N->m_ulValue[0]++;
    for(i = 0; i < 550; i++)
    {
        if(Mod_Big_Long(N, PrimeTable[i]) == 0)
        {
            goto begin;
        }
    }
    memcpy(&K, N, sizeof(CBigInt));
    K.m_ulValue[0]--;
    for(i = 0; i < 5; i++)
    {
        Mov_Big_Long(&A, rand()*rand());
        memcpy(&S, &K, sizeof(CBigInt));
        Div_Big_Long(&S, 2);
        memcpy(&I, &A, sizeof(CBigInt));
        RsaTrans(&I, &S, N);
        if(((I.m_nLength != 1) || (I.m_ulValue[0] != 1)) && (Cmp(&I, &K) != 0))
        {
            goto begin;
        }
    }
    return N;
}

/***********************************************************************/

static void entropy_poll(unsigned char *output, unsigned int len)
{
    if(len > 0)
    {
        int i;
        srand(portable_rand_seed);
        for(i = 0; i < len; i++)
        {
            output[i] = rand() % 0xff + 1;
        }
    }
}

static char *del_PKCS1Padding(char *src)
{
    int len = strlen(src);
    if(len % 2 == 1)
    {
        src++;
    }
    while(*src != 0 && *(src + 1) != 0)
    {
        if(*src == '0' && *(src + 1) == '0')
        {
            src += 2;
            break;
        }
        src += 2;
    }
    return src;
}

static int add_PKCS1Padding(unsigned char *src, unsigned int len, unsigned char *out)
{
    if(len > RSA_ENCODE_LEN - 11)
    {
        return -1;
    }
    else
    {
        /*要加密的msg*/
        memcpy(&out[RSA_ENCODE_LEN - len], src, len);
        out[0] = 0;
        out[1] = 2;
        /*至少8字节的随机数*/
        entropy_poll(&out[2], RSA_ENCODE_LEN - 3 - len);
        out[RSA_ENCODE_LEN - len - 1] = 0;
        return 0;
    }
}

static int PKCS1PKCS1PaddingHexRemove(unsigned char *input, unsigned short *len, unsigned char *output)
{
    if(input[0] == 0 && (input[1] == 1 || input[1] == 2))
    {
        int i;
        for(i = 2; i < *len; i++)
        {
            if(input[i] == 0)
            {
                *len -= (i + 1);
                memcpy(output, &input[i + 1], *len);
                return *len;
            }
        }
    }
    return -1;
}


int RSA2048_pri_PKCS1Padding_Encode(unsigned char *data, unsigned short len, unsigned char *out, char *publicKey, char *ModulusHex)
{
    unsigned char buf[RSA_ENCODE_LEN];
    CBigInt N, E;
    CBigInt mw, mi, jm;
    uint16_t outlen = RSA_ENCODE_LEN;

    //Get(&N, Modulus, 16);//string
    GetHex(&N, ModulusHex, RSA_ENCODE_LEN, 16);//hex array
    Get(&E, publicKey, 16);

    add_PKCS1Padding(data, len, buf);

    GetHex(&mw, buf, RSA_ENCODE_LEN, 16);

    RsaTrans(&mw, &E, &N);

    PutHex(&mw, out, &outlen);
    return outlen;
}

int RSA2048_pub_PKCS1Padding_Encode(unsigned char *data, unsigned short len, unsigned char *out, char *publicKey, unsigned char *ModulusHex)
{
    unsigned char buf[RSA_ENCODE_LEN];
    CBigInt N, E;
    CBigInt mw, mi, jm;
    uint16_t outlen = RSA_ENCODE_LEN;

    GetHex(&N, ModulusHex, RSA_ENCODE_LEN, 16);//hex array
    Get(&E, publicKey, 16);

    add_PKCS1Padding(data, len, buf);

    GetHex(&mw, buf, RSA_ENCODE_LEN, 16);

    RsaTrans(&mw, &E, &N);

    PutHex(&mw, out, &outlen);
    return outlen;
}

int RSA2048_pri_PKCS1Padding_Decode(unsigned char *data, unsigned short *len, unsigned char *out, char *privateKey, char *ModulusHex)
{
    unsigned char buf[RSA_ENCODE_LEN];
    CBigInt N, D;
    CBigInt mw, jm;

    //Get(&N, Modulus, 16);//string
    GetHex(&N, ModulusHex, RSA_ENCODE_LEN, 16);//hex array
    Get(&D, privateKey, 16);

    GetHex(&mw, data, *len, 16);

    RsaTrans(&mw, &D, &N);
    PutHex(&mw, buf, len);
    PKCS1PKCS1PaddingHexRemove(buf, len, out);
    return 0;
}
int RSA2048_pub_PKCS1Padding_Decode(unsigned char *data, unsigned short *len, unsigned char *out, char *privateKey, unsigned char *ModulusHex)
{
    unsigned char buf[RSA_ENCODE_LEN];
    CBigInt N, D;
    CBigInt mw, jm;
    int t_len = 0;

    GetHex(&N, ModulusHex, RSA_ENCODE_LEN, 16);
    Get(&D, privateKey, 16);

    GetHex(&mw, data, *len, 16);

    RsaTrans(&mw, &D, &N);
    PutHex(&mw, buf, len);
    t_len = PKCS1PKCS1PaddingHexRemove(buf, len, out);
    return t_len;
}


//test
static const unsigned char base64_table[65] = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";

//需要释放内存
unsigned char * base64_encode(const unsigned char *src, size_t len, size_t *out_len)
{
    unsigned char *out, *pos;
    const unsigned char *end, *in;
    size_t olen;
    int line_len;

    olen = len * 4 / 3 + 4; /* 3-byte blocks to 4-byte */
    olen += olen / 72; /* line feeds */
    olen++; /* nul termination */
    if(olen < len)
    {
        return NULL;    /* integer overflow */
    }
    out = portable_malloc(olen);
    if(out == NULL)
    {
        return NULL;
    }

    end = src + len;
    in = src;
    pos = out;
    line_len = 0;
    while(end - in >= 3)
    {
        *pos++ = base64_table[in[0] >> 2];
        *pos++ = base64_table[((in[0] & 0x03) << 4) | (in[1] >> 4)];
        *pos++ = base64_table[((in[1] & 0x0f) << 2) | (in[2] >> 6)];
        *pos++ = base64_table[in[2] & 0x3f];
        in += 3;
        line_len += 4;
        if(line_len >= 72)
        {
            *pos++ = '\\n';
            line_len = 0;
        }
    }

    if(end - in)
    {
        *pos++ = base64_table[in[0] >> 2];
        if(end - in == 1)
        {
            *pos++ = base64_table[(in[0] & 0x03) << 4];
            *pos++ = '=';
        }
        else
        {
            *pos++ = base64_table[((in[0] & 0x03) << 4) |
                                                  (in[1] >> 4)];
            *pos++ = base64_table[(in[1] & 0x0f) << 2];
        }
        *pos++ = '=';
        line_len += 4;
    }

    if(line_len)
    {
        *pos++ = '\\n';
    }

    *pos = '\\0';
    if(out_len)
    {
        *out_len = pos - out;
    }
    return out;
}

//需要释放内存
unsigned char * base64_decode(const unsigned char *src, size_t len,
                              size_t *out_len)
{
    unsigned char dtable[256], *out, *pos, block[4], tmp;
    size_t i, count, olen;
    int pad = 0;

    memset(dtable, 0x80, 256);
    for(i = 0; i < sizeof(base64_table) - 1; i++)
    {
        dtable[base64_table[i]] = (unsigned char) i;
    }
    dtable['='] = 0;

    count = 0;
    for(i = 0; i < len; i++)
    {
        if(dtable[src[i]] != 0x80)
        {
            count++;
        }
    }

    if(count == 0 || count % 4)
    {
        return NULL;
    }

    olen = count / 4 * 3;
    pos = out = portable_malloc(olen);
    if(out == NULL)
    {
        return NULL;
    }

    count = 0;
    for(i = 0; i < len; i++)
    {
        tmp = dtable[src[i]];
        if(tmp == 0x80)
        {
            continue;
        }

        if(src[i] == '=')
        {
            pad++;
        }
        block[count] = tmp;
        count++;
        if(count == 4)
        {
            *pos++ = (block[0] << 2) | (block[1] >> 4);
            *pos++ = (block[1] << 4) | (block[2] >> 2);
            *pos++ = (block[2] << 6) | block[3];
            count = 0;
            if(pad)
            {
                if(pad == 1)
                {
                    pos--;
                }
                else if(pad == 2)
                {
                    pos -= 2;
                }
                else
                {
                    /* Invalid padding */
                    portable_free(out);
                    return NULL;
                }
                break;
            }
        }
    }

    *out_len = pos - out;
    return out;
}

int main(int argc, char *argv[])
{
 //原始公钥-私钥
    /*
    -----BEGIN PUBLIC KEY-----
    MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAwmejRhw/SB2xB3rgJYhg
    OWBDX/DponDVVPzTWhn3J4INv6jUa9HDkeHhys4OOZTNajr8kRy4TIemotnIYONJ
    noW7VyIQEAkEyxcMett5mqRPBLuyc8Fygn4ho/rd9JId4+PgKLmr6NVcuZCpVXPe
    gyqNx0nR/UojISbq/Bu+NlcStmicZUuAeVbkGGUOlvtMzFehkBPwE31EdpYUq+/z
    LuJ8OaxC+zm5PFo2AZJfI5Gz5lgb1g5ud0TG1JUrm9Dl5/JSNSL3SXBEC77mdfd0
    BA5VFl8lV7IfTfSTUE9IKoMevqZxoaGpyN+ZcBby5NgsoqJJ6vmcJRFjI92UrFHV
    1wIDAQAB
    -----END PUBLIC KEY-----

    -----BEGIN PRIVATE KEY-----
    MIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQDCZ6NGHD9IHbEH
    euAliGA5YENf8OmicNVU/NNaGfcngg2/qNRr0cOR4eHKzg45lM1qOvyRHLhMh6ai
    2chg40mehbtXIhAQCQTLFwx623mapE8Eu7JzwXKCfiGj+t30kh3j4+Aouavo1Vy5
    kKlVc96DKo3HSdH9SiMhJur8G742VxK2aJxlS4B5VuQYZQ6W+0zMV6GQE/ATfUR2
    lhSr7/Mu4nw5rEL7Obk8WjYBkl8jkbPmWBvWDm53RMbUlSub0OXn8lI1IvdJcEQL
    vuZ193QEDlUWXyVXsh9N9JNQT0gqgx6+pnGhoanI35lwFvLk2Cyioknq+ZwlEWMj
    3ZSsUdXXAgMBAAECggEAEnEUaw0475VpesUsSEM0pZy9J3fKIg/EHQjS3+RAru3G
    ch0I8aV3gPpFmiCL9uhnyCEKXpWz4gaoRyCTwqUtEa2sBOsFTRAd9Uodc/YoBgR6
    Pn+zwQlj3H8sn8qnjZDi5wBx/ksGxNKgtjXD6ohQXm8F/hbBpd6HkJiJiBr1o1/a
    4Kzh9L1OpYVS5QF0EN3idNkt911vfjA+bqBXXjAf9IHvirQ2GeCNzmHygxiRhAWA
    ki2fm0pGbKFUAfo+sgtDPT2jrA4rhSHG4mMr8IWBpr082aKNns7ujxT9ndBCl0Pp
    7efPNCT4+zqfyVAB6x2rYhtXTqR7wsASMIfSLzyoIQKBgQDi2sb9z4OEl0mTV0Ey
    1Lia4F06QhD7Kl1mhBWYPA1RO1ieAHHINFvwPJQLjHR2yMRMDmTOc3S9Hy3H3QMG
    XZlrIl5sgeFzsdqGyd2kscGFUGkH9RY2V/XB0mxQFIGI2PBztqd6e6BJQz4oSyMz
    cBZq/NH5u95QRlyI0I1u5b5lMQKBgQDbYZdhqHcDYmc61aHRNEhnxbK4ph1bdTiM
    QbIF0wUssXQKwEzvYzswRlI27rXeSHpJA8vc+XAoD/+Ut30I8Td3yUnnsHZctU2D
    b/8OTqwFqyrwXM+SvyWZejuvX6IVJuRwPMFG88L88lryEs0ntlQKC/x6wxtcs67X
    6ZGsLSfJhwKBgQDAo09/kIv6OA4+lEXFSGZK/mOsaRXKcztFJry/vZ8BcAfchDwa
    6nt4EbkV5XuwsuQeQcrQlbJ4NtXFdqRu72SsWU8djV1Jxanv89PHWzseXh4Sp8jo
    9OC4aluX1RH6h14IpP6rP/fovrU1ujh2IaSnzXDxRNuQB2/krlSr62Q2wQKBgGNL
    jbgvBwcqH+06So6lKmyFx/nZfgoqSVj6VzhZpcrv2sUO+wOTF3QnMAkbDIg6p9aq
    eDhhUklfzF+kmVxVybRXEDNk5H3bteTa6Uexhhzet4WpjG4wRDVuZNtg3rzSKK1A
    Yn7Z0BSrIUzWA7OIzArsF+/8pULVNTsWxc93dL27AoGAT3eaPv07rhzyztxFYTsr
    dHcgNb+vwroN3Ic7IJnxoa2BjyqczaAG3vMrOcxFg2MLJ7fPmI1W4pPOJyxmUhO0
    mZhk+F7h+dg7XB7h0lqR1usp3Ak3qyu1f4XZj4imzQWWyETpgE4uA9tBniPQIRK6
    miXhZ2YoXfdsSZOatWojGLI=
    -----END PRIVATE KEY-----
    */

    //https://www.oren.net.cn/rsa/info.html
    //在线转换为模数和指数

    //PEM->模数+指数
    char *publicKey_exponent = "10001";
    char *privateKey_exponent = "1271146b0d38ef95697ac52c484334a59cbd2777ca220fc41d08d2dfe440aeedc6721d08f1a57780fa459a208bf6e867c8210a5e95b3e206a8472093c2a52d11adac04eb054d101df54a1d73f62806047a3e7fb3c10963dc7f2c9fcaa78d90e2e70071fe4b06c4d2a0b635c3ea88505e6f05fe16c1a5de87909889881af5a35fdae0ace1f4bd4ea58552e5017410dde274d92df75d6f7e303e6ea0575e301ff481ef8ab43619e08dce61f2831891840580922d9f9b4a466ca15401fa3eb20b433d3da3ac0e2b8521c6e2632bf08581a6bd3cd9a28d9eceee8f14fd9dd0429743e9ede7cf3424f8fb3a9fc95001eb1dab621b574ea47bc2c0123087d22f3ca821";

    //hex array ,faster than string
    //直接使用16进制数据可略微提高速度,软件也支持传入字符串
    // 具体看代码中 GetHex 和 Get
    static unsigned char ModulusHex[RSA_ENCODE_LEN] =
    {
        0xC2, 0x67, 0xA3, 0x46, 0x1C, 0x3F, 0x48, 0x1D, 0xB1, 0x07, 0x7A, 0xE0, 0x25, 0x88, 0x60, 0x39,
        0x60, 0x43, 0x5F, 0xF0, 0xE9, 0xA2, 0x70, 0xD5, 0x54, 0xFC, 0xD3, 0x5A, 0x19, 0xF7, 0x27, 0x82,
        0x0D, 0xBF, 0xA8, 0xD4, 0x6B, 0xD1, 0xC3, 0x91, 0xE1, 0xE1, 0xCA, 0xCE, 0x0E, 0x39, 0x94, 0xCD,
        0x6A, 0x3A, 0xFC, 0x91, 0x1C, 0xB8, 0x4C, 0x87, 0xA6, 0xA2, 0xD9, 0xC8, 0x60, 0xE3, 0x49, 0x9E,
        0x85, 0xBB, 0x57, 0x22, 0x10, 0x10, 0x09, 0x04, 0xCB, 0x17, 0x0C, 0x7A, 0xDB, 0x79, 0x9A, 0xA4,
        0x4F, 0x04, 0xBB, 0xB2, 0x73, 0xC1, 0x72, 0x82, 0x7E, 0x21, 0xA3, 0xFA, 0xDD, 0xF4, 0x92, 0x1D,
        0xE3, 0xE3, 0xE0, 0x28, 0xB9, 0xAB, 0xE8, 0xD5, 0x5C, 0xB9, 0x90, 0xA9, 0x55, 0x73, 0xDE, 0x83,
        0x2A, 0x8D, 0xC7, 0x49, 0xD1, 0xFD, 0x4A, 0x23, 0x21, 0x26, 0xEA, 0xFC, 0x1B, 0xBE, 0x36, 0x57,
        0x12, 0xB6, 0x68, 0x9C, 0x65, 0x4B, 0x80, 0x79, 0x56, 0xE4, 0x18, 0x65, 0x0E, 0x96, 0xFB, 0x4C,
        0xCC, 0x57, 0xA1, 0x90, 0x13, 0xF0, 0x13, 0x7D, 0x44, 0x76, 0x96, 0x14, 0xAB, 0xEF, 0xF3, 0x2E,
        0xE2, 0x7C, 0x39, 0xAC, 0x42, 0xFB, 0x39, 0xB9, 0x3C, 0x5A, 0x36, 0x01, 0x92, 0x5F, 0x23, 0x91,
        0xB3, 0xE6, 0x58, 0x1B, 0xD6, 0x0E, 0x6E, 0x77, 0x44, 0xC6, 0xD4, 0x95, 0x2B, 0x9B, 0xD0, 0xE5,
        0xE7, 0xF2, 0x52, 0x35, 0x22, 0xF7, 0x49, 0x70, 0x44, 0x0B, 0xBE, 0xE6, 0x75, 0xF7, 0x74, 0x04,
        0x0E, 0x55, 0x16, 0x5F, 0x25, 0x57, 0xB2, 0x1F, 0x4D, 0xF4, 0x93, 0x50, 0x4F, 0x48, 0x2A, 0x83,
        0x1E, 0xBE, 0xA6, 0x71, 0xA1, 0xA1, 0xA9, 0xC8, 0xDF, 0x99, 0x70, 0x16, 0xF2, 0xE4, 0xD8, 0x2C,
        0xA2, 0xA2, 0x49, 0xEA, 0xF9, 0x9C, 0x25, 0x11, 0x63, 0x23, 0xDD, 0x94, 0xAC, 0x51, 0xD5, 0xD7
    };

    unsigned char encode_str[RSA_ENCODE_LEN] = {0};
    unsigned char decode_str[RSA_ENCODE_LEN] = {0};

    int outlen = 0;

    unsigned char * base64_str = NULL;
    unsigned int base64_str_len = NULL;

    uint8_t* decode_base64 = NULL;
    char pub_source_string[] = "embedded-system > Public key to RSA encode,hehe";
    char pri_source_string[] = "embedded-system > Private key to RSA encode,haha";

    printf("RSA demo");
    //---------------------------------------------------
    memset(encode_str, 0, sizeof(encode_str));
    memset(decode_str, 0, sizeof(decode_str));
    //公钥加密
    outlen = RSA2048_pub_PKCS1Padding_Encode(pub_source_string, strlen(pub_source_string), encode_str, publicKey_exponent, ModulusHex);

    //密文转base64方便显示,和在线工具对比结果
    // https://the-x.cn/cryptography/Rsa.aspx
    //base64_str = base64_encode(encode_str, outlen, &base64_str_len);
    //printf("Public encode %d\\r\\n%s\\r\\n", base64_str_len, base64_str);
    //portable_free(base64_str);

    //私钥解密
    RSA2048_pri_PKCS1Padding_Decode(encode_str, &outlen, decode_str, privateKey_exponent, ModulusHex);
    printf("Private decode %d\\r\\n%s\\r\\n", outlen, decode_str);

    //---------------------------------------------------
    memset(encode_str, 0, sizeof(encode_str));
    memset(decode_str, 0, sizeof(decode_str));

    //私钥签名
    outlen = RSA2048_pri_PKCS1Padding_Encode(pri_source_string, strlen(pri_source_string), encode_str, privateKey_exponent, ModulusHex);

    //公钥验签
    RSA2048_pub_PKCS1Padding_Decode(encode_str, &outlen, decode_str, publicKey_exponent, ModulusHex);
    printf("Public decode %d\\r\\n%s\\r\\n", outlen, decode_str);

    //---------------------------------------------------
    printf("RSA demo done");
    return 0;
}

5、应用

和AES一样,RSA也是块加密算法( block cipher algorithm),只针对固定长度数据块,如RSA2048其加密的数据长度需要填充后是2048位即256字节,如果明文长度大于244字节则需要拆分。当然最简单的办法是应用层分配多个244字节缓存,有效数据以外以0x00填充。

RSA算法虽然安全,但其计算量非常大,效率较低,尤其在嵌入式系统中,硬件资源有限的情况下加密、解密时间以秒为单位。而对称加密算法AES算法效率高,但其在密钥协商时,在网络传输中有被拦截的风险,或者任一方保存不当导致密钥泄露,其密钥存在很大的安全隐患。

所以,考虑到安全性和高效性,一般采用多种算法组合加密的方式。使用RSA来加密AES的密钥,密钥协商后,使用AES来对后续数据进行加密。

更多信息,请关注微信公众号 嵌入式系统

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 数据
    +关注

    关注

    8

    文章

    7015

    浏览量

    88996
  • 密钥
    +关注

    关注

    1

    文章

    138

    浏览量

    19757
  • 加密算法
    +关注

    关注

    0

    文章

    215

    浏览量

    25547
收藏 人收藏

    评论

    相关推荐

    快充充电器基于非对称椭圆曲线加密算法的单芯片认证方案

    基于非对称椭圆曲线加密算法的单芯片认证方案
    发表于 08-15 10:41 1966次阅读
    快充充电器基于<b class='flag-5'>非对称</b>椭圆曲线<b class='flag-5'>加密算法</b>的单芯片认证方案

    单片机处理非对称加密算法

    普通单片机可以处理非对称加密算法吗?速度如何?求大神解答
    发表于 09-17 12:38

    RSA加密算法

    哪位大神使用过labview实现过RSA加密算法,求指点。其中好像涉及到解二元一次方程,不知道有没有这一类控件或者vi支持这样的功能。
    发表于 08-22 11:07

    对称加密算法

    对称加密算法对称加密就是加密和解密使用同一个密钥。信息接收双方都需事先知道密匙和加解密
    发表于 07-19 06:32

    加密算法(DES,AES,RSA,MD5,SHA1,Base64)

    加密算法(DES,AES,RSA,MD5,SHA1,Base64)比较和项目应用加密技术通常分为两大类:"对称"和"
    发表于 07-19 08:44

    对称加密算法是什么

    对称加密算法也叫私钥加密算法,其特征是收信方和发信方使用相同的密钥,即加密密钥和解密密钥是相同或等价的。非对称
    发表于 07-22 07:09

    浅谈对称加密算法非对称密钥加密算法

    什么是对称密钥密码体制?对称密钥密码体制的缺点是什么?非对称加密算法又是什么?非对称加密算法的缺
    发表于 12-23 06:05

    嵌入式软件加密算法的相关资料分享

    嵌入式软件加密算法
    发表于 02-11 07:11

    地图数据网络分发的混合加密算法

    分析并比较对称加密算法DES, AES和非对称加密算法RSA,结合地图数据网络分发的实际应用,提出散列组合
    发表于 04-16 09:48 32次下载

    常见公钥加密算法有哪些

    Cryptography(ECC,椭圆曲线加密算法)。使用最广泛的是RSA算法(由发明者Rivest、Shmir和Adleman姓氏首字母缩写而来)是著名的公开金钥加密算法,ElGa
    发表于 12-10 09:41 4.4w次阅读

    非对称加密算法有什么特点

    对称加密算法对称加密算法使用两把完全不同但又是完全匹配的一对钥匙—公钥和私钥。在使用不对称加密算法
    发表于 12-10 09:54 2.3w次阅读

    什么是非对称加密?非对称加密概念

    对称加密算法加密和解密时使用的是同一个秘钥;而非对称加密算法需要两个密钥来进行加密和解密,这两
    发表于 12-10 10:38 2.2w次阅读
    什么是<b class='flag-5'>非对称</b><b class='flag-5'>加密</b>?<b class='flag-5'>非对称</b><b class='flag-5'>加密</b>概念

    java实现非对称加密算法的过程

    对称加密:解密方式是加密方式的逆运算,即加密和解密使用的是同一个密钥(初等加密算法)。
    发表于 12-10 10:54 5432次阅读
    java实现<b class='flag-5'>非对称</b><b class='flag-5'>加密算法</b>的过程

    举例几种常见的加密算法

    今天主要总结下常用的对称加密算法DES和AES,非对称加密算法RSA。 01  DES加密算法
    的头像 发表于 04-28 13:52 2w次阅读
    举例几种常见的<b class='flag-5'>加密算法</b>

    Go常用的加密算法详细解读

    【导读】本文介绍了常用的加密算法,并对这些加密算法结合实际 golang 代码段进行了详细解读。 前言 加密解密在实际开发中应用比较广泛,常用加解密分为:“对称
    的头像 发表于 09-01 14:47 2988次阅读