0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

unity在stm32上的使用

CHANBAEK 来源:嵌入式记录 作者:独处东汉 2023-05-15 10:51 次阅读

unity在stm32上的使用

本文目标:unity在stm32上的使用。

按照本文的描述,应该可以在你所处的硬件上跑通代码。

先决条件:装有编译和集成的开发环境,比如:Keil uVision5。

板子硬件要求:无,芯片自带的串口功能即可完成。

源码获取

Unity 是一个轻量级的 C 语言单元测试框架,它的设计理念是简单易用。 Unity 支持测试套件和测试用例,同时提供了丰富的断言函数,包括比较、异常和日志等。

源码入口:

GitHub - ThrowTheSwitch/Unity: Simple Unit Testing for C

https://github.com/ThrowTheSwitch/Unity/

图片

源码里面结构,接下来准备一个stm32的基础工程,把相关代码移植进去。

基础工程

使用STM32CubeMX配置stm32的基本配置。 基本的配置如下:开启swd调试,开启外部时钟,开启串口

图片

时钟界面选项卡:

图片

工程选项卡:

图片

点击右上角的的生成代码:

图片

使用keil打开工程,编译工程,一切都是ok

图片

开始移植

在工程中,新建Unity文件夹,将源码添加进根文件,然后添加进工程,并设置对应的编译路径,其中test_unity_conde.c是我自己新建的内容。

图片

图片

设置头文件路径:

图片

在main.c中,添加串口映射代码,使用printf

/* USER CODE BEGIN 4 */
#ifdef __GNUC__
  /* With GCC/RAISONANCE, small printf (option LD Linker->Libraries->Small printf
     set to 'Yes') calls __io_putchar() */
  #define PUTCHAR_PROTOTYPE int __io_putchar(int ch)
#else
  #define PUTCHAR_PROTOTYPE int fputc(int ch, FILE *f)
#endif /* __GNUC__ */
/**
  * @brief  Retargets the C library printf function to the USART.
  * @param  None
  * @retval None
  */
PUTCHAR_PROTOTYPE
{
  /* Place your implementation of fputc here */
  /* e.g. write a character to the EVAL_COM1 and Loop until the end of transmission */
  HAL_UART_Transmit(&huart1, (uint8_t *)&ch, 1, 0xFFFF);
  return ch;
}

int fgetc(FILE * f)
{
  uint8_t ch = 0;
  HAL_UART_Receive(&huart1, (uint8_t *)&ch, 1, 0xffff);
  return ch;
}


/* USER CODE END 4 */

编译代码,报错,新建一个自己的test_unity_conde.c源码,添加报错的这两个函数即可编译通过。

图片

main.c中的代码:

图片

unity_config.h内容到位:

/* Unity Configuration
 * As of May 11th, 2016 at ThrowTheSwitch/Unity commit 837c529
 * Update: December 29th, 2016
 * See Also: Unity/docs/UnityConfigurationGuide.pdf
 *
 * Unity is designed to run on almost anything that is targeted by a C compiler.
 * It would be awesome if this could be done with zero configuration. While
 * there are some targets that come close to this dream, it is sadly not
 * universal. It is likely that you are going to need at least a couple of the
 * configuration options described in this document.
 *
 * All of Unity's configuration options are `#defines`. Most of these are simple
 * definitions. A couple are macros with arguments. They live inside the
 * unity_internals.h header file. We don't necessarily recommend opening that
 * file unless you really need to. That file is proof that a cross-platform
 * library is challenging to build. From a more positive perspective, it is also
 * proof that a great deal of complexity can be centralized primarily to one
 * place in order to provide a more consistent and simple experience elsewhere.
 *
 * Using These Options
 * It doesn't matter if you're using a target-specific compiler and a simulator
 * or a native compiler. In either case, you've got a couple choices for
 * configuring these options:
 *
 *  1. Because these options are specified via C defines, you can pass most of
 *     these options to your compiler through command line compiler flags. Even
 *     if you're using an embedded target that forces you to use their
 *     overbearing IDE for all configuration, there will be a place somewhere in
 *     your project to configure defines for your compiler.
 *  2. You can create a custom `unity_config.h` configuration file (present in
 *     your toolchain's search paths). In this file, you will list definitions
 *     and macros specific to your target. All you must do is define
 *     `UNITY_INCLUDE_CONFIG_H` and Unity will rely on `unity_config.h` for any
 *     further definitions it may need.
 */


#ifndef UNITY_CONFIG_H
#define UNITY_CONFIG_H


/* ************************* AUTOMATIC INTEGER TYPES ***************************
 * C's concept of an integer varies from target to target. The C Standard has
 * rules about the `int` matching the register size of the target
 * microprocessor. It has rules about the `int` and how its size relates to
 * other integer types. An `int` on one target might be 16 bits while on another
 * target it might be 64. There are more specific types in compilers compliant
 * with C99 or later, but that's certainly not every compiler you are likely to
 * encounter. Therefore, Unity has a number of features for helping to adjust
 * itself to match your required integer sizes. It starts off by trying to do it
 * automatically.
 **************************************************************************** */


/* The first attempt to guess your types is to check `limits.h`. Some compilers
 * that don't support `stdint.h` could include `limits.h`. If you don't
 * want Unity to check this file, define this to make it skip the inclusion.
 * Unity looks at UINT_MAX & ULONG_MAX, which were available since C89.
 */
 #define UNITY_EXCLUDE_LIMITS_H 


/* The second thing that Unity does to guess your types is check `stdint.h`.
 * This file defines `UINTPTR_MAX`, since C99, that Unity can make use of to
 * learn about your system. It's possible you don't want it to do this or it's
 * possible that your system doesn't support `stdint.h`. If that's the case,
 * you're going to want to define this. That way, Unity will know to skip the
 * inclusion of this file and you won't be left with a compiler error.
 */
/* #define UNITY_EXCLUDE_STDINT_H */


/* ********************** MANUAL INTEGER TYPE DEFINITION ***********************
 * If you've disabled all of the automatic options above, you're going to have
 * to do the configuration yourself. There are just a handful of defines that
 * you are going to specify if you don't like the defaults.
 **************************************************************************** */


 /* Define this to be the number of bits an `int` takes up on your system. The
 * default, if not auto-detected, is 32 bits.
 *
 * Example:
 */
/* #define UNITY_INT_WIDTH 16 */


/* Define this to be the number of bits a `long` takes up on your system. The
 * default, if not autodetected, is 32 bits. This is used to figure out what
 * kind of 64-bit support your system can handle.  Does it need to specify a
 * `long` or a `long long` to get a 64-bit value. On 16-bit systems, this option
 * is going to be ignored.
 *
 * Example:
 */
/* #define UNITY_LONG_WIDTH 16 */


/* Define this to be the number of bits a pointer takes up on your system. The
 * default, if not autodetected, is 32-bits. If you're getting ugly compiler
 * warnings about casting from pointers, this is the one to look at.
 *
 * Example:
 */
 #define UNITY_POINTER_WIDTH 64 


/* Unity will automatically include 64-bit support if it auto-detects it, or if
 * your `int`, `long`, or pointer widths are greater than 32-bits. Define this
 * to enable 64-bit support if none of the other options already did it for you.
 * There can be a significant size and speed impact to enabling 64-bit support
 * on small targets, so don't define it if you don't need it.
 */
/* #define UNITY_INCLUDE_64 */




/* *************************** FLOATING POINT TYPES ****************************
 * In the embedded world, it's not uncommon for targets to have no support for
 * floating point operations at all or to have support that is limited to only
 * single precision. We are able to guess integer sizes on the fly because
 * integers are always available in at least one size. Floating point, on the
 * other hand, is sometimes not available at all. Trying to include `float.h` on
 * these platforms would result in an error. This leaves manual configuration as
 * the only option.
 **************************************************************************** */


 /* By default, Unity guesses that you will want single precision floating point
  * support, but not double precision. It's easy to change either of these using
  * the include and exclude options here. You may include neither, just float,
  * or both, as suits your needs.
  */
 #define UNITY_EXCLUDE_FLOAT  
 #define UNITY_INCLUDE_DOUBLE 
/* #define UNITY_EXCLUDE_DOUBLE */


/* For features that are enabled, the following floating point options also
 * become available.
 */


/* Unity aims for as small of a footprint as possible and avoids most standard
 * library calls (some embedded platforms don't have a standard library!).
 * Because of this, its routines for printing integer values are minimalist and
 * hand-coded. To keep Unity universal, though, we eventually chose to develop
 * our own floating point print routines. Still, the display of floating point
 * values during a failure are optional. By default, Unity will print the
 * actual results of floating point assertion failures. So a failed assertion
 * will produce a message like "Expected 4.0 Was 4.25". If you would like less
 * verbose failure messages for floating point assertions, use this option to
 * give a failure message `"Values Not Within Delta"` and trim the binary size.
 */
/* #define UNITY_EXCLUDE_FLOAT_PRINT */


/* If enabled, Unity assumes you want your `FLOAT` asserts to compare standard C
 * floats. If your compiler supports a specialty floating point type, you can
 * always override this behavior by using this definition.
 *
 * Example:
 */
/* #define UNITY_FLOAT_TYPE float16_t */


/* If enabled, Unity assumes you want your `DOUBLE` asserts to compare standard
 * C doubles. If you would like to change this, you can specify something else
 * by using this option. For example, defining `UNITY_DOUBLE_TYPE` to `long
 * double` could enable gargantuan floating point types on your 64-bit processor
 * instead of the standard `double`.
 *
 * Example:
 */
/* #define UNITY_DOUBLE_TYPE long double */


/* If you look up `UNITY_ASSERT_EQUAL_FLOAT` and `UNITY_ASSERT_EQUAL_DOUBLE` as
 * documented in the Unity Assertion Guide, you will learn that they are not
 * really asserting that two values are equal but rather that two values are
 * "close enough" to equal. "Close enough" is controlled by these precision
 * configuration options. If you are working with 32-bit floats and/or 64-bit
 * doubles (the normal on most processors), you should have no need to change
 * these options. They are both set to give you approximately 1 significant bit
 * in either direction. The float precision is 0.00001 while the double is
 * 10^-12. For further details on how this works, see the appendix of the Unity
 * Assertion Guide.
 *
 * Example:
 */
/* #define UNITY_FLOAT_PRECISION 0.001f  */
/* #define UNITY_DOUBLE_PRECISION 0.001f */




/* *************************** MISCELLANEOUS ***********************************
 * Miscellaneous configuration options for Unity
 **************************************************************************** */


/* Unity uses the stddef.h header included in the C standard library for the
 * "NULL" macro. Define this in order to disable the include of stddef.h. If you
 * do this, you have to make sure to provide your own "NULL" definition.
 */
/* #define UNITY_EXCLUDE_STDDEF_H */


/* Define this to enable the unity formatted print macro:
 * "TEST_PRINTF"
 */
/* #define UNITY_INCLUDE_PRINT_FORMATTED */




/* *************************** TOOLSET CUSTOMIZATION ***************************
 * In addition to the options listed above, there are a number of other options
 * which will come in handy to customize Unity's behavior for your specific
 * toolchain. It is possible that you may not need to touch any of these but
 * certain platforms, particularly those running in simulators, may need to jump
 * through extra hoops to operate properly. These macros will help in those
 * situations.
 **************************************************************************** */


/* By default, Unity prints its results to `stdout` as it runs. This works
 * perfectly fine in most situations where you are using a native compiler for
 * testing. It works on some simulators as well so long as they have `stdout`
 * routed back to the command line. There are times, however, where the
 * simulator will lack support for dumping results or you will want to route
 * results elsewhere for other reasons. In these cases, you should define the
 * `UNITY_OUTPUT_CHAR` macro. This macro accepts a single character at a time
 * (as an `int`, since this is the parameter type of the standard C `putchar`
 * function most commonly used). You may replace this with whatever function
 * call you like.
 *
 * Example:
 * Say you are forced to run your test suite on an embedded processor with no
 * `stdout` option. You decide to route your test result output to a custom
 * serial `RS232_putc()` function you wrote like thus:
 */
/* #define UNITY_OUTPUT_CHAR(a)                    RS232_putc(a) */
/* #define UNITY_OUTPUT_CHAR_HEADER_DECLARATION    RS232_putc(int) */
/* #define UNITY_OUTPUT_FLUSH()                    RS232_flush() */
/* #define UNITY_OUTPUT_FLUSH_HEADER_DECLARATION   RS232_flush(void) */
/* #define UNITY_OUTPUT_START()                    RS232_config(115200,1,8,0) */
/* #define UNITY_OUTPUT_COMPLETE()                 RS232_close() */


/* Some compilers require a custom attribute to be assigned to pointers, like
 * `near` or `far`. In these cases, you can give Unity a safe default for these
 * by defining this option with the attribute you would like.
 *
 * Example:
 */
/* #define UNITY_PTR_ATTRIBUTE __attribute__((far)) */
/* #define UNITY_PTR_ATTRIBUTE near */


/* Print execution time of each test when executed in verbose mode
 *
 * Example:
 *
 * TEST - PASS (10 ms)
 */
/* #define UNITY_INCLUDE_EXEC_TIME */


#endif /* UNITY_CONFIG_H */

test_unity_code.c中的内容:

#include "unity.h"
#include "unity_internals.h"


#include 


void setUp(void)
{
}

void tearDown(void)
{
}

/*
    闰年判断函数
  闰年:能被4整除同时不能被100整除,或者能被400整除。
*/
int IsLeapYear(int year)
{
    uint8_t flag = 0;
    if(((year % 100!=0) && (year % 4==0)) || ( year % 400==0) )
    {
        flag = 1;
    }
    return flag;
}

void leapYear(void)
{
    TEST_ASSERT_TRUE(IsLeapYear(2020));
    TEST_ASSERT_TRUE(IsLeapYear(2000));
}

void commonYear(void)
{
    TEST_ASSERT_FALSE(IsLeapYear(1999));
    TEST_ASSERT_FALSE(IsLeapYear(2100));
}

// 被测函数
int add(int a, int b) {
  return a + b;
}


// 测试函数
void test_add(void) {
  TEST_ASSERT_EQUAL(4, add(2, 2));
  TEST_ASSERT_EQUAL(0, add(0, 0));
  TEST_ASSERT_EQUAL(0, add(-1, 1));
}


// 被测函数
void led_on(uint8_t *gpio_state) {
  // 设置GPIO引脚为低电平,点亮LED灯
   *gpio_state = 0;
}


void led_off(uint8_t *gpio_state) {
  // 设置GPIO引脚为高电平,熄灭LED灯
  *gpio_state = 1;
}


// 测试函数
void test_led_off(void) {
  // 模拟GPIO引脚的状态
  uint8_t gpio_state = 0;


  // 调用被测函数之前,检查GPIO引脚为低电平
  TEST_ASSERT_EQUAL(0, gpio_state);


  // 调用被测函数,并传入一个指针参数,用于修改GPIO引脚的状态
  led_off(&gpio_state);


  // 调用被测函数之后,检查GPIO引脚为高电平
  TEST_ASSERT_EQUAL(1, gpio_state);
}


void test_led_on(void) {
  // 模拟GPIO引脚的状态
  uint8_t gpio_state = 1;


   // 调用被测函数之前,检查GPIO引脚为高电平
   TEST_ASSERT_EQUAL(1, gpio_state);


   // 调用被测函数,并传入一个指针参数,用于修改GPIO引脚的状态
   led_on(&gpio_state);


   // 调用被测函数之后,检查GPIO引脚为低电平
   TEST_ASSERT_EQUAL(0, gpio_state);
}


// 被测函数
void reverse_string(char *str) {
  // 反转一个字符串
  int len = strlen(str);
  for (int i = 0; i < len / 2; i++) {
    char temp = str[i];
    str[i] = str[len - i - 1];
    str[len - i - 1] = temp;
  }
}


// 测试函数
void test_reverse_string(void) {
  // 定义一个测试字符串
  char test_str[] = "Hello World";


   // 调用被测函数之前,检查字符串内容
   TEST_ASSERT_EQUAL_STRING("Hello World", test_str);


   // 调用被测函数,并传入字符串参数
   reverse_string(test_str);


   // 调用被测函数之后,检查字符串内容是否反转
   TEST_ASSERT_EQUAL_STRING("dlroW olleH", test_str);
}


void test_unity(void)
{
//  UnityPrint("heihei\\r\\n");
//  UnityPrint("\\r\\n************\\r\\n");


    // 初始化测试注册表
    UNITY_BEGIN();


    // 运行测试函数
    RUN_TEST(test_add);
    RUN_TEST(leapYear);
    RUN_TEST(commonYear);
    RUN_TEST(test_led_on);
    RUN_TEST(test_led_off);
    RUN_TEST(test_reverse_string);


    UNITY_END();
}

实验现象

编译工程:下载进工程,可以在串口助手界面观察到相关日志。

图片

可以在工程中跑一下官方的demo,观察一下实验现象,本文完!

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • STM32
    +关注

    关注

    2270

    文章

    10904

    浏览量

    356352
  • C语言
    +关注

    关注

    180

    文章

    7605

    浏览量

    136995
  • 串口
    +关注

    关注

    14

    文章

    1555

    浏览量

    76584
  • keil
    +关注

    关注

    68

    文章

    1213

    浏览量

    166944
  • Unity
    +关注

    关注

    1

    文章

    127

    浏览量

    21836
收藏 人收藏

    评论

    相关推荐

    Cisco Unity Express语音邮件

    Cisco CallManager Express解决方案的重要组件。Cisco CallManager环境中,Cisco Unity Express为分支机构提供了语音邮件的本地存储和处理功能
    发表于 11-13 21:50

    allegro16.3为什么没有load unity menu

    allegro16.3可以登錄到Cadence Menu,可是登錄以後为什么不能再轉為unity menu,圖2中就沒有“Load unity menu”這一項,另外我已經安裝完了最新Uni
    发表于 06-20 10:22

    unity基础开发:高通AR Unity虚拟按钮

    ;wwwww"); } } #endregion // PUBLIC_METHODS}添加到这个物体ImageTarget,添加注意 virtual Button Behaviour 这个脚本的name就是vb.VirtualButtonName=="button"
    发表于 09-20 11:55

    高通AR Unity播放器特性

    范围内会引起检测与跟踪,就你Android和ios设备一样。一旦AR目标被检测到,你会看到在你的增强被渲染到场景中。注意事项● Vuforia播放模式仅在Unity Pro版本下起作用,回插件加载
    发表于 09-20 11:56

    Unity3D浅谈&Unity5游戏及交互设计

    Unity3D是由丹麦Unity公司开发的游戏开发工具,作为一款跨平台的游戏开发工具,从一开始就被设计成易于使用的产品。支持包括IOS,ANDROID,PC,WEB,PS3.XBOX等多个平台的发布
    发表于 07-02 06:25

    分享个Unity电视遥控器按钮事件控制源码

    展示 `上下左右键`。一、如何消除电视的全屏提示弹窗在做unity手机游戏适配成电视游戏时,出现一个问题,电视打开unity打包出的a
    发表于 01-03 07:44

    STM32CubeMX添加功能代码加入Unity单元测试工程

    文章目录前言STM32CubeMX添加功能代码加入Unity单元测试工程链接微信公众号前言昨天被师兄问起程序单元测试的问题, 顿时一脸懵逼, 啥? 单元测试. 折腾了一天, 用Unity好歹撸出来一
    发表于 01-10 08:10

    Unity关键项目范围设置指南

    烘焙到灯光贴图中或投影纹理,而不是投射阴影。 在你开始之前,本指南最后一次更新是针对Unity 2019.3。 本指南涉及通用渲染管道(URP)。Unity的早期版本中,这被称为轻量级渲染管道。 创建新项目时,请选择URP模板
    发表于 08-02 13:25

    EMC UNITY VSA

    EMC UNITY VSA
    发表于 01-04 22:03 0次下载

    Unity和UE的优势及缺点分析

    Unity优点 手游的第一选择,网站上有很多的教程和文档(特别对于入门级开发者); 使用C#和Java编码(C++可以特定领域使用,但并不推荐); 比较友好,可用插件较多,开发效率高; 简易且直观
    发表于 09-26 11:13 0次下载

    Unity中的Enlighten与混合光照

    Unity的5.6版本之前的5.x中,主要使用了Geomerics公司的Enlighten【1】来提供实时全局照明以及烘焙全局照明,5.6之后Unity引入了新的Lightmapp
    发表于 05-31 05:28 2176次阅读

    怎样安装Unity

    适用于以后。本文结束时,您将安装Unity并准备好在Unity环境中工作。您还将学习如何使用预建资产在下一篇文章中构建基本的VR应用程序。
    的头像 发表于 08-01 14:12 3054次阅读

    Unity宣布与Snap达成合作;《纽约时报》宣布与Facebook合作Instagram推出AR填字游戏

    Unity宣布与Snap达成合作;《纽约时报》宣布与Facebook合作Instagram推出AR填字游戏 Unity宣布与Snap达成合作,以扩展广告客户群体并将Snap技术带给
    的头像 发表于 12-24 17:59 3345次阅读

    Unity与ROS链接介绍

    对于ROS而言,其最常用的就是Topic话题以及Service两个了。之前我们了解Unity Robotics Hub时候就了解到基本的Unity和ROS的通讯,下面我们来详细介绍一下Uni
    的头像 发表于 11-17 17:22 1020次阅读
    <b class='flag-5'>Unity</b>与ROS链接介绍

    如何将消息导入Unity

    自定义msg 将消息导入Unity的步骤如下所示: 1.Unity的菜单“Robotics→Generate ROS Messages…”选择。 2.“ROS message path”中选
    的头像 发表于 11-17 17:26 547次阅读
    如何将消息导入<b class='flag-5'>Unity</b>