0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

什么是IQ调制器?IQ调制器如何工作?接收侧如何实现信号解调?

冬至子 来源:RFZone 作者:Knight 2023-06-12 11:28 次阅读

当完成数字比特流到 IQ 坐标系的映射后,便可以得到数字 I 和 Q 信号,然后分别经过 DAC 变换为模拟 I 和 Q 信号,最后经过 IQ 调制器完成上变频,图1给出了数字调制的简要架构示意图。作为整个数字调制发射系统的关键部件,IQ 调制器完成了基带信号的频谱搬移,从而达到空口传输的条件。

什么是 IQ 调制器?IQ 调制器如何工作?接收侧如何实现信号解调?本文将给出具体介绍。

图片

图1. 数字调制发射系统架构示意图

**1. 什么是 IQ ** 调制器? 图2给出了 IQ 调制器的简要示意图,通常包含四个端口:模拟 I 输入,模拟 Q 输入,LO (本振)端口以及射频输出端口。有的 IQ 调制器还支持差分模拟 I/Q 输入,因此具有更多的端口。IQ 调制器包括两个对称的支路,每个支路包含一个 Mixer (上变频);两个 Mixer 的 LO 同源,但是要求正交,即存在90°相位差。

图片

图2. IQ调制器架构示意图

IQ 调制器具有三个比较关键的性能指标:(1) 整个带宽内的频率响应;(2) 两个支路间的幅频响应对称性(IQ 增益平衡);(3) 两路 LO 信号的正交性。

这些指标的优劣将直接影响信号调制质量的好坏。IQ 调制器的频率响应包括幅频响应和相频响应,对于理想的线性时不变系统 (LTI),幅频响应是平坦的,相频响应是线性的,信号可以无失真的传输。因此,频响性能越好,调制质量越高,从系统的角度讲,BER 越低。

为什么要强调 IQ 调制器两个支路间的幅频对称性呢?如果两个支路的频谱响应不同,就会造成 IQ 不平衡传输,当产生中心频率与 IQ 调制器 LO 频率不同的信号时,镜频分量抑制效果会变差。因此,需要控制 IQ 调制器支路间的幅频特性差异。

类似地,两个 Mixer 的 LO 正交性也将会影响镜频抑制能力。如果完全正交,则不会对镜频抑制能力有影响。当偏离正交时,镜频分量会增强。

如果模拟 IQ 调制器的特性不是很理想,势必会影响信号的调制质量。但是,可以通过源端预失真来补偿,从而改善信号质量,比如矢量信号源中允许调整 I/Q Imbalance 及 I/Q Quadrature 参数等。

**2. 发射端 IQ 调制器是如何实现上变频的?接收端 IQ ** 解调器又是如何实现信号解调的? 此处信号的调制与解调,仅限于模拟 IQ 信号到 RF,再从 RF 信号解调出模拟 IQ 信号。通过下面的介绍,除了调制与解调的过程,您还将会了解为什么基带 I 和 Q 信号的带宽经过 IQ 调制器后会翻倍。

首先介绍一下信号的 单边带频谱与双边带频谱。 这两种频谱都可准确描述信号频谱,但是出发点不同,应用场景也不同。

任何一个周期信号,只要满足狄里赫利条件,均可以写为一组完备正交集函数的无穷级数。通常完备的正交集函数为三角函数,比如 { ** cos(nΩt)sin(nΩt)** ,n为任意非负整数};根据欧拉公式,三角函数与虚指数函数存在一定的关系,因此周期信号也可以写为虚指数函数的无穷级数。

图片

如果按照三角函数级数展开,则对应的频谱为单边带频谱,如果按照虚指数函数级数展开,则对应的频谱是关于零频左右对称的频谱,此时称为双边带频谱。由于运算更加方便,双边带频谱应用更加广泛。

对于调制应用而言,涉及到频谱的搬移,因此采用双边带频谱更加方便。下文所涉及的频谱,均指双边带频谱。双边带频谱包括负频率成分,没有具体物理意义,但是从数学角度讲,这些又是构成傅里叶变换的必不可少的组成部分。

图2所示的 IQ 调制器,在上变频的过程中,两个 Mixer 实际上起到乘法器的作用,即 i(t) 与 cos(ωct) 相乘,q(t) 与 sin(ωct) 相乘,最后合为一路输出。

假设 I(ω) 和 Q(ω) 分别为 i(t) 和 q(t) 的傅里叶变换,而三角函数的傅里叶变换为

图片

根据频域卷积定理可得:

图片

由此可见,和经过混频器后,从傅里叶的角度看,其双边带频谱发生了搬移,中心频率由 DC 搬移至ωc。傅里叶变换的产物中还包含(-ωc)频率成分,如前所述,负频率不具有实际物理意义,但是作为傅里叶变换的重要组成部分,构成了整个变换的数学完整性。

虚数* j *的存在表明,两部分信号之间的载波存在90°相差,二者保持正交。

以上数学推导也可以由图解完成,图3给出了正余弦函数的傅里叶变换示意图,模拟 IQ 信号经过调制器后,频谱变换示意图如图4所示。

图片

图3. 正、余弦三角函数的傅里叶变换

图片

图4. IQ调制频谱变换示意图

因采用双边带频谱描述信号,i(t) 和 q(t) 实际带宽为双边带频谱带宽的一半,由上述推导可知,当经过调制器上变频之后,整个双边带频谱搬移至射频,故输出的信号s(t) 的带宽相对于基带信号的带宽翻倍了。

在接收侧,射频调制信号可经过模拟 IQ 解调器解调,经过低通滤波器之后分别得到模拟 I 和 Q 信号。数学推导与 IQ 调制类似,此处不再赘述。图5给出了解调的整个图解过程,非常清晰地表明了如何由射频信号得到基带信号。

图片

图5. IQ解调频谱变换示意图

3. IQ 调制与解调的实现方法有哪些? 前面介绍调制及解调过程时,默认是按照模拟 IQ 调制器和解调器介绍的。现实中绝大多数数字调制发射系统均是采用了模拟 IQ 调制器,从测试设备的角度讲,矢量信号源也是采用了模拟 IQ 调制器的架构。

尽管如此,IQ 调制功能也是可以通过数字的方式实现的,称为数字****IQ 调制器 ,在数字侧完成符号映射及 IQ 调制,从而得到具有载波的波形,最后经过 DAC 直接播放出来。任意波信号发生器(AWG)产生数字调制信号就是采用这种方式,但是DAC的时钟频率决定了能够输出的最高信号频率。

类似地,模拟 IQ 解调器的功能也可以由数字方式实现,称为 数字下变频 。而且相对于模拟解调器而言,数字下变频应用更加广泛。其基本思路为:射频信号经过下变频至 IF 频段,然后经过 ADC 直接离散化,对离散的数据作数字下变频便可以得到数字 IQ 信号,最后对 IQ 数据进一步分析。现在的矢量信号分析仪基本都是采用这个架构,有的矢量分析方案采用示波器及分析软件的方案,也是应用了数字下变频技术,如图6所示。

图片

图6. 矢量信号分析架构示意图

以上介绍了 IQ 调制器的概念、IQ 调制及解调过程及其实现方法,后面的内容将重点介绍 IQ 调制器的特性,比如镜频抑制特性、载波抑制能力,以及相对于普通上变频器,IQ 调制器的优势等。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 低通滤波器
    +关注

    关注

    14

    文章

    474

    浏览量

    47390
  • 混频器
    +关注

    关注

    10

    文章

    679

    浏览量

    45668
  • 调制器
    +关注

    关注

    3

    文章

    840

    浏览量

    45142
  • 信号发生器
    +关注

    关注

    28

    文章

    1472

    浏览量

    108739
  • 傅里叶变换
    +关注

    关注

    6

    文章

    441

    浏览量

    42592
收藏 人收藏

    评论

    相关推荐

    调制器解调器

    解调器完成相反的工作,它们取出调制信号,把它分解成一个信息信号和一个载波信号
    发表于 12-07 14:11

    请问矢量调制器IQ调制器有什么区别

    矢量调制器IQ调制器有什么区别
    发表于 08-22 10:32

    数字调制系列:IQ调制解调简述

    达到空口传输的条件。什么是IQ 调制器IQ 调制器如何工作接收
    发表于 07-01 11:15

    一文详解IQ正交调制器基础知识

    发生IQ 混频两大部分。不管是调幅,调频或是调相信号,只需要通过改变不同的IQ 基带信号
    发表于 05-16 17:07

    用于解决FM调制低功耗方案的IQ调制器的精度和线性介绍

    为通信应用生成模拟或数字FM时,IQ调制器提供通用的低功耗解决方案。示例设计将显示混合信号MCU如何用于执行相位累加和正弦/余弦查找表功能。证明了
    的头像 发表于 04-15 08:18 6039次阅读
    用于解决FM<b class='flag-5'>调制</b>低功耗方案的<b class='flag-5'>IQ</b><b class='flag-5'>调制器</b>的精度和线性介绍

    简述IQ调制解调实现方法

    数字IQ调制器,在数字完成符号映射及IQ 调制,从而得到具有载波的波形,最后经过DAC 直接播放出来。任意波
    发表于 07-01 15:03 1.3w次阅读
    简述<b class='flag-5'>IQ</b><b class='flag-5'>调制</b>及<b class='flag-5'>解调</b>及<b class='flag-5'>实现</b>方法

    理解IQ调制器工作原理及如何解调IQ信号

    分别经过DAC变换为模拟I和Q信号,最后经过IQ调制器完成上变频,图1给出了数字调制的简要架构示意图。作为整个数字调制发射系统的关键部件,
    发表于 07-16 10:25 12次下载
    理解<b class='flag-5'>IQ</b><b class='flag-5'>调制器</b>的<b class='flag-5'>工作</b>原理及如何<b class='flag-5'>解调</b><b class='flag-5'>IQ</b><b class='flag-5'>信号</b>

    模拟IQ调制器的特性介绍

    在前面关于数字调制的文章中分别介绍了IQ 调制的基本理论及调制解调的数学解析及图解过程,阐述了常见的数字
    发表于 11-17 10:38 4次下载
    模拟<b class='flag-5'>IQ</b><b class='flag-5'>调制器</b>的特性介绍

    IQ调制器的特性详细讲解分析

    常见的数字调制方式,并解释了为什么经过 IQ 调制器之后带宽会翻倍的原因。本文将着重介绍模拟 IQ 调制器的特性,为后面的
    发表于 12-29 04:56 28次下载
    <b class='flag-5'>IQ</b><b class='flag-5'>调制器</b>的特性详细讲解分析

    AN-1039: 校正IQ调制器缺陷,提高射频信号保真度

    AN-1039: 校正IQ调制器缺陷,提高射频信号保真度
    发表于 03-20 12:11 5次下载
    AN-1039: 校正<b class='flag-5'>IQ</b><b class='flag-5'>调制器</b>缺陷,提高射频<b class='flag-5'>信号</b>保真度

    AN146-IQ调制器中EVM性能的优化

    AN146-IQ调制器中EVM性能的优化
    发表于 05-10 10:36 5次下载
    AN146-<b class='flag-5'>IQ</b><b class='flag-5'>调制器</b>中EVM性能的优化

    用于产生FM的低功耗IQ调制器

    在为通信应用生成模拟或数字FM时,IQ调制器可提供多功能的低功耗解决方案。示例设计将展示如何使用混合信号MCU执行相位累加和正弦/余弦查找表功能。证明了
    的头像 发表于 01-03 14:20 2209次阅读
    用于产生FM的低功耗<b class='flag-5'>IQ</b><b class='flag-5'>调制器</b>

    用于数字通信的低功耗IQ调制器

    IQ 调制器是射频系统的多功能构建模块。最常见的应用是为数字通信系统生成RF信号。本文说明了 LTC5599 低功耗 IQ 调制器
    的头像 发表于 01-08 11:03 4190次阅读
    用于数字通信的低功耗<b class='flag-5'>IQ</b><b class='flag-5'>调制器</b>

    模拟IQ调制器的特性

    模拟 IQ 调制器包含 Mixer,在上变频的过程中,势必会产生镜频产物。当输出无频偏信号时,即信号中心频率与调制器的 LO
    的头像 发表于 06-12 10:44 1315次阅读
    模拟<b class='flag-5'>IQ</b><b class='flag-5'>调制器</b>的特性

    数字调制系列:IQ调制器特性

    常见的数字调制方式,并解释为什么经过IQ调制器后带宽会翻倍的原因。
    发表于 06-18 09:26 0次下载