众所周知,“挖坑”是英飞凌的祖传手艺。在硅基产品时代,英飞凌的沟槽型IGBT(例如TRENCHSTOP系列)和沟槽型的MOSFET就独步天下。在碳化硅的时代,市面上大部分的SiC MOSFET都是平面型元胞,而英飞凌依然延续了沟槽路线。难道英飞凌除了“挖坑”,就不会干别的了吗?非也。因为SiC材料独有的特性,SiC MOSFET选择沟槽结构,和IGBT是完全不同的思路。咱们一起来捋一捋。
MOSFET全称金属-氧化物半导体场效应晶体管(Metal-Oxide-Semiconductor Field-Effect Transistor)。MOSFET的简化结构如下图所示:硅片表面生长一层薄薄的氧化层,其上覆盖多晶硅形成门极,门极两侧分别是N型注入的源极和漏极。当门极上施加的电压高于阈值电压时,门极氧化层下面就形成了强反型层沟道。这时再给漏源极之间施加一个正压,电子就可以从源极经过反型层沟道,源源不断地流到漏极。电流就这样形成了。

功率MOSFET为了维持较高的击穿电压,将漏极放在芯片背面,整个漂移层承受电压。功率MOSFET的导通电阻,由几部分构成:源极金属接触电阻、沟道电阻、JFET电阻、漂移区电阻、漏极金属接触电阻。设计人员总是要千方百计地降低导通电阻,进而降低器件损耗。对于高压硅基功率器件来说,为了维持比较高的击穿电压,一般需要使用较低掺杂率以及比较宽的漂移区,因此漂移区电阻在总电阻中占比较大。碳化硅材料临界电场强度约是硅的10倍,因此碳化硅器件的漂移区厚度可以大大降低。对于1200V及以下的碳化硅器件来说,沟道电阻的成为总电阻中占比最大的部分。因此,减少沟道电阻是优化总电阻的关键所在。

再来看沟道电阻的公式。

式中:
Lchannel:沟道长度,
Wchannel:沟道宽度,
COX:栅氧电容,
μn,channel:沟道电子迁移率
从上式可以看出,沟道电阻和沟道电子迁移率(μn,channel)成反比。沟道形成于SiO2界面处,因此SiO2界面质量对于沟道电子迁移率有直接的影响。通俗一点说,电子在沟道中流动,好比汽车在高速公路上行驶。路面越平整,车速就越快。如果路面全是坑,汽车就不得不减速。而不幸的是,碳化硅材料形成的SiC-SiO2界面,缺陷密度要比Si-SiO2高得多。这些缺陷在电子流过会捕获电子,电子迁移率下降,从而沟道电阻率上升。

平面型器件怎么解决这个问题呢?再看一下沟道电阻的公式,可以看到有几个简单粗暴的办法:提高栅极电压Vgs,或者降低栅极氧化层厚度,或者降低阈值电压Vth。前两个办法,都会提高栅极氧化层中的电场强度,但太高的电场强度不利于器件的长期可靠性(栅氧化层的击穿电压一般是10MV/cm,但4MV/cm以上的场强就会提高器件长期潜在失效率)。如果器件的阈值电压Vth太低,在实际开关过程中,容易发生寄生导通。更严重的是,阈值电压Vth会随着温度的升高而降低,高温下的寄生导通问题会更明显。

平面型SiC MOSFET栅氧薄弱点
好像进入到一个进退两难的境地了?别忘了,碳化硅是各向异性的晶体,不同的晶面,其态密度也是不同的。英飞凌就找到了一个晶面,这个晶面与垂直方向有4°的夹角,在这个晶面上生长SiO2, 得到的缺陷密度是最低的。这个晶面接近垂直于表面,于是,英飞凌祖传的”挖坑”手艺,就派上用场了。CoolSiC MOSFET也就诞生了。需要强调一下,不是所有的沟槽型MOSFET都是CoolSiC! CoolSiC是英飞凌碳化硅产品的商标。CoolSiC MOSFET具有下图所示非对称结构。

✦+
+
CoolSiC MOSFET使用沟槽有什么好处?
首先,垂直晶面缺陷密度低,沟道电子迁移率高。所以,我们可以使用相对比较厚的栅极氧化层,同样实现很低的导通电阻。因为氧化层的厚度比较厚,不论开通还是关断状态下,它承受的场强都比较低,所以器件可靠性和寿命都更高。下图比较了英飞凌CoolSiC MOSFET与硅器件,以及其它品牌SiC MOSFET的栅氧化层厚度对比。可以看到,CoolSiC MOSFET 栅氧化层厚度为70nm,与Si器件相当。而其它平面型SiC MOSFET栅氧化层厚度最大仅为50nm。如果施加同样的栅极电压,平面型的SiC MOSFET栅氧化层上的场强就要比沟槽型的器件增加30%左右。

而且,CoolSiC MOSFET阈值电压约为4.5V,在市面上属于比较高的值。这样做的好处是在桥式应用中,不容易发生寄生导通。下图比较了英飞凌CoolSiCMOSFET与其它竞争对手的阈值电压,以及在最恶劣工况下,由米勒电容引起的栅极电压过冲。如果米勒电压过冲高于阈值电压,意味着可能发生寄生导通。英飞凌CoolSiC器件的米勒电压低于阈值电压,实际应用中一般不需要米勒钳位,节省驱动威廉希尔官方网站 设计时间与成本。

要说给人挖坑容易,给SiC“挖坑”,可就没那么简单了。碳化硅莫氏硬度9.5,仅次于金刚石。在这么坚硬的材料上不光要挖坑,还要挖得光滑圆润。这是因为,沟槽的倒角处,是电场最容易集中的地方,CoolSiC不光完美处理了倒角,还上了双保险,在沟槽一侧设置了深P阱。在器件承受反压时,深P阱可以包裹住沟槽的倒角,从而减轻电场集中的现象。
深P阱的另一个功能,是作为体二极管的阳极。通常的MOSFET体二极管阳极都是由P基区充当,深P阱的注入浓度和深度都高于P基区,可以使体二极管导通压降更低,抗浪涌能力更强。
好的,CoolSiC MOSFET就先介绍到这里了。CoolSiC MOSFET不是单纯的沟槽型MOSFET,它在独特的晶面上形成沟道,并且有非对称的深P阱结构,这使得CoolSiCMOSFET具有较低的导通电阻,与Si器件类似的可靠性,以及良好的体二极管特性。

✦+
+
再来概括一下全文内容:
为什么需要沟槽型SiC MOSFET?
我需要SiC MOSFET具有比较低的导通电阻Rdson→我不能单纯地提高栅极电压,降低阈值电压或者降低栅氧化层的厚度,这样可能使器件寿命下降→我找到一个垂直的晶面,它具有最低的缺陷率,从而允许更高的沟道电子迁移率→开始“挖坑”
沟槽型CoolSiC MOSFET有什么好处?
导通电阻低,芯片面积小
阈值电压高,米勒电容小,不易发生寄生导通。
非对称的深P阱结构缓解沟槽拐角处电场,另外形成增强型的体二极管结构,优化了二极管特性。
与Si IGBT相当的栅极氧化层厚度,寿命及可靠性与Si器件相当
能过总结我们可以看出,SiC MOSFET使用沟槽栅能大大提升器件参数、可靠性及寿命。
-
MOSFET
+关注
关注
147文章
7162浏览量
213254 -
SiC
+关注
关注
29文章
2811浏览量
62635
发布评论请先 登录
相关推荐
本文介绍了一种基于英飞凌碳化硅沟槽栅(CoolSiC™)的系统解决方案
SiC MOSFET和SiC SBD的区别
Littelfuse宣布推出IX4352NE低侧SiC MOSFET和IGBT栅极驱动器
如何更好地驱动SiC MOSFET器件?
英飞凌科技推出新一代碳化硅(SiC)MOSFET沟槽栅技术
深入对比SiC MOSFET vs Qorvo SiC FET
沟槽当道,平面型SiC MOSFET尚能饭否?
MOSFET的栅源振荡究竟是怎么来的?栅源振荡的危害什么?如何抑制
英飞凌发布新一代碳化硅(SiC)MOSFET沟槽栅技术
全面提升!英飞凌推出新一代碳化硅技术CoolSiC MOSFET G2
英飞凌推出新一代碳化硅MOSFET沟槽栅技术
英飞凌推出新一代碳化硅技术CoolSi MOSFET G2
3300V SiC MOSFET栅氧可靠性研究

SiC MOSFET真的有必要使用沟槽栅吗?
评论