0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

无人机低空高光谱遥感影像柑橘黄龙病植株监测模型探究

莱森光学 来源:莱森光学 作者:莱森光学 2023-09-14 16:11 次阅读

引言

为实现大范围的柑橘黄龙病监测预警,提供一种减少人工成本的柑橘黄龙病病害统计方法,本研究通过地面实测黄龙病植株,协同无人机采集低空高光谱遥感影像,经过异常数据剔除、平滑去噪、一阶微分变换、二阶微分变换等处理后,构建支持向量机(SVM)分类模型对柑橘黄龙病进行识别,探讨低空无人机高光谱遥感监测黄龙病的可行性。

数据来源及研究方法

2.1 数据来源

试验地点为广西壮族自治区柳州市鹿寨县平山,数据来源于使用无人机搭载机载高光谱成像仪采集的低空高光谱遥感影像。高光谱正射影像数据包含反射率为30%的漫反射定标板,影像分辨率默认设置为1m。采集图像的区域为柑橘健康植株和黄龙病植株的种植地块,如图1所示。

图1 无人机低空高光谱遥感影像采集区域

在前期的地面调研中,已通过田间诊断和PCR检测等地面实测方法对数据采集区域的柑橘植株感染黄龙病情况进行抽样确认,即对目标区域的柑橘植株采样(51株),以专家经验的方式选定目标植株进行随机抽样采集叶片,健康植株每株采集3张叶片,黄龙病植株症状较明显和症状不明显的叶片各采集3张。采用实时荧光定量PCR检测样本,结果显示21个样本感染黄龙病。基于此,本研究在获取到无人机低空高光谱遥感影像后,分别建立健康植株冠层和黄龙病植株冠层样本的感兴趣区域(ROI)。

2.2 研究方法

本研究通过使用软件完成样本制作。提取样本点的平均光谱数据,计算结果并导出 Excel格式文件,用于后续试验研究的数据处理分析。最后通过式(1)把提取到的柑橘植株冠层高光谱数据进行反射率转换,得到柑橘植株冠层的相对光谱反射率,计算公式如下。

wKgZomUCwESAZVIbAAAdb3FK5O4191.png

式中,DNC为柑橘植株冠层的辐射亮度值,DNB为漫反射定标板的辐射亮度值,SRC为柑橘植株冠层 的相对光谱反射率,SRB为漫反射定标板的光谱反射率。

2.2.1 黄龙病分类与检测模型

选取400~1000的特征波段,使用通过软件获取的原始光谱、一阶微分光谱(FDR)和二阶微分光谱(SDR)作为样本变量;

采用经典机器学习分类方法中的支持向量机(SVM)建立柑橘黄龙病分类与检测模型;引入径向基核函数(RBF kernel)来处理高维数据;通过随机拆分数据集的方式使模型样本训练集和测试集的数据分布尽量保持一致。SVM是经典机器学习中的一类监督学习算法,常被用来解决二分类问题,对于高维、非线性的数据有较好的分类能力。

3、结果与分析

3.1 无人机低空高光谱遥感影像数据处理

通过地面实测与遥感协同的方式,验证无人机高光谱成像仪获取的光谱反射率曲线规律。首先,使用OneClassSVM 算法分别剔除无人机低空高光谱遥感数据样本中黄龙病柑橘植株和健康柑橘植株冠层的相对光谱反射率异常数据,如图2所示;

wKgZomUCwEWAZ3WxAAY0ClU3uFI946.png

图2低空遥感无人机高光谱数据异常检测结果

然后将其进行SG平滑,效果如图3。结果表明,One⁃ClassSVM处理后的光谱数据中异常数据较少且较好地保留了初始光谱的主要信息,后续试验将异常剔除和SG 平滑后的光谱作为建模使用的原始光谱。

wKgaomUCwEaAFQT0AAF6hZwWrhk101.png

图3无人机低空高光谱遥感数据 SG平滑效果

最后将原始光谱进行一阶微分和二阶微分变换,对图像灰度变化有较强的响应,从而突出检测目标的特征光谱。本研究中,OneClassSVM 算法以波段反射率或者PCA主成分为变量,高光谱波段较多,因此通过PCA减少模型所用的变量数,提高分类速度。将原始光谱、FDR、SDR,3类光谱数据分别进行PCA降维,得到3类光谱数据的主成分变量。综合考虑累计方差贡献率,当累计方差贡献率达99.99%时,将主成分数目调至85。采用SVM模型分别对各类全波段光谱和主成分变量进行建模训练和测试。

3.2 柑橘黄龙病SVM 分类模型构建效果

各类全波段光谱和主成分变量在SVM分类模型训练和测试效果如表1所示。SVM分类模型参数见表1,通过对比模型准确率,选取模型的最佳参数。

表1波段光谱不同处理下SVM模型的分类结果

wKgZomUCwEaADxgMAAHhdCeEBes359.png

FDR、SDR的准确率相对稳定,优化幅度较小,且均优于FDR、SDR原始光谱,表明原始光谱经过变换后,有助于SVM分类模型提升判别能力。PCA降维后数据信息量减少,测试集单个样本所需要的预测时间减少。2种样本的训练集准确率略有上升,但样本1的测试集准确率却下降,说明PCA降维对 SVM分类模型的判别准确率存在一定影响。SVM分类模型在引入 RBF后对高维数据有较强的处理能力,与信息量不完整的主成分变量相比,信息完整的全波段光谱的SVM分类模型分类效果更好。试验采用随机拆分数据集的方式,使训练集和测试集的全波段光谱在高维空间中的分布和距离尽量保持一致,从而增加计算量。SVM分类模型对ENVI的全波段一阶微分光谱训练集和测试集分类 准确率分别达到92.39%和96.43%。可见SVM分类模型适用于柑橘黄龙病低空遥感监测。

4、讨论

1)对于高光谱数据,合适的光谱变换能有效地提高黄龙病植株区域判别准确率,如试验中从原始光谱变换到FDR数据后,判别模型有较好地优化效果,但再变换到SDR数据后,模型优化效果不明显。后续的研究中,可尝试把原始光谱变换成反对数光谱(ILR spectra),因为反对数光谱可以有效地放大相似光谱间的差异。

2)空中高光谱图像受设备、地面、大气等多客观因素的干扰,因此要对数据进行预处理以便消除干扰,提高数据的可区分性。在软件的ROI统计工具中,首先将样本矢量图形shape文件导入样本中,在软件中每个彩色方框即为样本ROI,可直接导出每个框的各波段像元平均值。在ROI上的统计中 可看到该ROI 内的像元统计信息,均值就是ROI内的各波段平均值。

3)从SVM分类模型对全波段光谱和主成分变量的判别效果来看,全波段光谱的分类准确率更优,但全波段光谱数据量大,处理效率低,不便于未来的推广和应用。后续的研究中可以尝试更适合于主成分变量的判别模型,如经典机器学习分类方法中的k近邻(kNN)以及深度神经网络模型等,进一步优化提升分类模型的准确率。此外,本研究目标区域的柑橘有可能种植时期不同,暂无法排除罹患黄龙病是造成与健康植株长势差异的唯一原因,冠层疏密程度不同,在光谱上可能存在差异,对最后的SVM模型分类效果存在影响。

5、结论

本研究通过地面实测判别出罹患黄龙病的柑橘植株,协同无人机低空遥感获取标定柑橘种植地块的高光谱影像,通过软件获取健康植株和黄龙病植株冠层感兴趣区域的平均光谱, 通过降噪和光谱变换得到原始光谱、一阶微分光谱 和二阶微分光谱,引入径向基核函数构建黄龙病支持向量机(SVM)分类模型。使用软件提取样本平均光谱,其全波段一阶微分光谱的训练集和测试集分类准确率分别为 87.41% 和 84.67%;使用另一软件提取样本平均光谱,其全波段一阶微分光谱的训练 集和测试集分类准确率分别为92.39%和96.43%。从试验结果可以看出,无人机低空高光谱遥感影像结合机器学习识别黄龙病的方法可行;同时也可以预见,在其技术成熟并且得到推广应用后,将会极大提高柑橘种植区域的有效管理和生产效率,可为柑橘种植区域的黄龙病防控提供信息技术支撑, 加快柑橘数字化发展进程。

推荐

无人机机载高光谱成像系统iSpecHyper-VM100

一款基于小型多旋翼无人机机载高光谱成像系统,该系统由高光谱成像相机、稳定云台、机载控制与数据采集模块、机载供电模块等部分组成。无人机机载高光谱成像系统通过独特的内置式或外部扫描和稳定控制,有效地解决了在微型无人机搭载推扫式高光谱照相机时,由于振动引起的图像质量较差的问题,并具备较高的光谱分辨率和良好的成像性能。

wKgZomUCwEeABx-zAABJinx5T6w80.jpeg




审核编辑 黄宇

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 监测
    +关注

    关注

    2

    文章

    3602

    浏览量

    44519
  • 遥感
    +关注

    关注

    0

    文章

    246

    浏览量

    16819
  • 无人机
    +关注

    关注

    230

    文章

    10430

    浏览量

    180310
  • 高光谱
    +关注

    关注

    0

    文章

    330

    浏览量

    9942
收藏 人收藏

    评论

    相关推荐

    无人机遥感技术

    加以完善改进而来。在全国多省份地区和无人机遥感,航测无人机无人机测绘航拍,灾害预防无人机,海洋监测
    发表于 03-11 07:59

    无人机遥感技术

    、体积孝重量轻、精度、存储量大、性能优异等特点。遥感数据的后处理技术目前的无人机遥感系统多使用小型数字相机(或扫描仪)作为机载遥感设备,与
    发表于 11-01 11:22

    一文读懂低空无人机监测与反制

    体积小,重量轻,可随时运输和携带。它对起降的要求低,随时飞降。无人机一般在云下低空平稳飞行,弥补了卫星光学遥感和普通航空摄影经常受云层遮挡获取不到影像的缺陷。
    发表于 06-13 09:34 7448次阅读

    使用无人机技术定位受感染树木和农作物

    Agrowing与VetorGEO合作,使无人机能够检测出感染了HLB或柑橘绿化柑橘树。无人机可以通过使用多
    发表于 02-19 11:32 744次阅读

    基于图像分割的无人机遥感影像目标提取技术

    基于图像分割的无人机遥感影像目标提取技术
    发表于 06-29 16:06 11次下载

    基于无人机光谱遥感的火龙果种植株数提取技术

    今天小编为大家分享的应用案例是:基于无人机光谱遥感的火龙果种植株数提取技术。 一、背景与意义 随着经济快速发展,火龙果种植规模不断扩大,目
    发表于 01-07 10:27 1254次阅读
    基于<b class='flag-5'>无人机</b><b class='flag-5'>高</b><b class='flag-5'>光谱</b><b class='flag-5'>遥感</b>的火龙果种<b class='flag-5'>植株</b>数提取技术

    无人机光谱在农田信息监测中的应用

    今天,我们讲讲无人机光谱是如何在农田信息监测中应用的。快速实时地掌握农田信息是实施精准农作的基础。以无人机为平台的
    的头像 发表于 04-24 10:11 2647次阅读

    基于无人机光谱遥感的森林可燃物分类方法研究-莱森光学

    在森林防火中的应用,利用无人机拍摄的多光谱影像进行可燃物分类相继开展,并出现了结合激光雷达的可燃物分类方法。我国目前可燃物分类技术的研究多集中于利用 Landsat卫星的多光谱
    的头像 发表于 06-02 11:42 810次阅读
    基于<b class='flag-5'>无人机</b><b class='flag-5'>高</b><b class='flag-5'>光谱</b><b class='flag-5'>遥感</b>的森林可燃物分类方法研究-莱森光学

    煤炭矿区耕地土壤有机质无人机光谱遥感估测

    进行预测,并对模型预测结果进行精度评价,将优选模型代入无人机光谱影像进行有机质填图,得到耕地范
    的头像 发表于 09-20 11:54 694次阅读
    煤炭矿区耕地土壤有机质<b class='flag-5'>无人机</b><b class='flag-5'>高</b><b class='flag-5'>光谱</b><b class='flag-5'>遥感</b>估测

    无人机光谱影像是否真的可以提升农业生产效率?

    农业是全球经济中的重要组成部分,而提高农业生产效率一直是农业领域的重要挑战之一。随着科技的不断发展,无人机光谱影像技术逐渐引起了广泛关注。这项技术利用
    的头像 发表于 01-30 11:53 507次阅读
    <b class='flag-5'>无人机</b><b class='flag-5'>高</b><b class='flag-5'>光谱</b><b class='flag-5'>影像</b>是否真的可以提升农业生产效率?

    比较基于无人机光谱影像和传统方法的土壤类型分类精度

    遥感技术的应用为土壤分类提供了新的可能性。光谱影像技术是无人机遥感中的重要组成部分,其能够提供
    的头像 发表于 02-19 16:55 446次阅读
    比较基于<b class='flag-5'>无人机</b><b class='flag-5'>高</b><b class='flag-5'>光谱</b><b class='flag-5'>影像</b>和传统方法的土壤类型分类精度

    如何利用无人机光谱影像技术进行深海生物调查与监测?

    在深海生物研究领域,传统的调查和监测方法往往需要大量的人力、物力,并且在某些情况下难以实现高效的数据收集。随着技术的进步,无人机光谱影像
    的头像 发表于 03-08 10:38 506次阅读
    如何利用<b class='flag-5'>无人机</b><b class='flag-5'>高</b><b class='flag-5'>光谱</b><b class='flag-5'>影像</b>技术进行深海生物调查与<b class='flag-5'>监测</b>?

    基于无人机光谱遥感的荒漠化草原地物分类研究2.0

    草原退化调查监测须获取实测数据,无人机搭载光谱成像仪进行低空遥感,是荒漠化草原地物分类的重要手
    的头像 发表于 06-17 15:33 304次阅读
    基于<b class='flag-5'>无人机</b><b class='flag-5'>高</b><b class='flag-5'>光谱</b><b class='flag-5'>遥感</b>的荒漠化草原地物分类研究2.0

    无人机光谱影像与冠层树种多样性监测

    无人机光谱影像与冠层树种多样性监测冠层树种多样性是自然森林生态系统功能和服务的重要基础。
    的头像 发表于 08-19 15:22 276次阅读
    <b class='flag-5'>无人机</b><b class='flag-5'>高</b><b class='flag-5'>光谱</b><b class='flag-5'>影像</b>与冠层树种多样性<b class='flag-5'>监测</b>

    基于无人机光谱遥感的棉花生长参数和产量估算

    无人机平台能够快速获取时空分辨率的遥感数据,以山东省滨州市棉花为研究对象,利用安装在无人机上的多光谱相机获取
    的头像 发表于 08-21 14:29 474次阅读
    基于<b class='flag-5'>无人机</b>多<b class='flag-5'>光谱</b><b class='flag-5'>遥感</b>的棉花生长参数和产量估算