0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

用dlib实现人脸识别的技巧

h1654155971.7688 来源:互联网 作者:佚名 2017-11-01 16:45 次阅读

很多人都认为人脸识别是一项非常难以实现的工作,看到名字就害怕,然后心怀忐忑到网上一搜,看到网上N页的教程立马就放弃了。这些人里包括曾经的我自己。其实如果如果你不是非要深究其中的原理,只是要实现这一工作的话,人脸识别也没那么难。今天我们就来看看如何在40行代码以内简单地实现人脸识别。

一点区分

对于大部分人来说,区分人脸检测和人脸识别完全不是问题。但是网上有很多教程有无无意地把人脸检测说成是人脸识别,误导群众,造成一些人认为二者是相同的。其实,人脸检测解决的问题是确定一张图上有木有人脸,而人脸识别解决的问题是这个脸是谁的。可以说人脸检测是是人识别的前期工作。今天我们要做的是人脸识别。

所用工具

Anaconda 2——Python 2

Dlib

scikit-image

Dlib

对于今天要用到的主要工具,还是有必要多说几句的。Dlib是基于现代C++的一个跨平台通用的框架,作者非常勤奋,一直在保持更新。Dlib内容涵盖机器学习、图像处理、数值算法、数据压缩等等,涉猎甚广。更重要的是,Dlib的文档非常完善,例子非常丰富。就像很多库一样,Dlib也提供了Python的接口,安装非常简单,用pip只需要一句即可:

pip install dlib

上面需要用到的scikit-image同样只是需要这么一句:

pip install scikit-image

·注:如果用pip install dlib安装失败的话,那安装起来就比较麻烦了。错误提示很详细,按照错误提示一步步走就行了。

人脸识别

之所以用Dlib来实现人脸识别,是因为它已经替我们做好了绝大部分的工作,我们只需要去调用就行了。Dlib里面有人脸检测器,有训练好的人脸关键点检测器,也有训练好的人脸识别模型。今天我们主要目的是实现,而不是深究原理。感兴趣的同学可以到官网查看源码以及实现的参考文献。今天的例子既然代码不超过40行,其实是没啥难度的。有难度的东西都在源码和论文里。

首先先通过文件树看一下今天需要用到的东西:

准备了六个候选人的图片放在candidate-faces文件夹中,然后需要识别的人脸图片test.jpg。我们的工作就是要检测到test.jpg中的人脸,然后判断她到底是候选人中的谁。另外的girl-face-rec.py是我们的python脚本。shape_predictor_68_face_landmarks.dat是已经训练好的人脸关键点检测器。dlib_face_recognition_resnet_model_v1.dat是训练好的ResNet人脸识别模型。ResNet是何凯明在微软的时候提出的深度残差网络,获得了 ImageNet 2015 冠军,通过让网络对残差进行学习,在深度和精度上做到了比CNN 更加强大。

1. 前期准备

shape_predictor_68_face_landmarks.dat和dlib_face_recognition_resnet_model_v1.dat都可以在这里找到。不能点击超链接的可以直接输入以下网址:http://dlib.net/files/

然后准备几个人的人脸图片作为候选人脸,最好是正脸。放到candidate-faces文件夹中。

本文这里准备的是六张图片,如下:

她们分别是

然后准备四张需要识别的人脸图像,其实一张就够了,这里只是要看看不同的情况:

可以看到前两张和候选文件中的本人看起来还是差别不小的,第三张是候选人中的原图,第四张图片微微侧脸,而且右侧有阴影。

2.识别流程

数据准备完毕,接下来就是代码了。识别的大致流程是这样的:

● 先对候选人进行人脸检测、关键点提取、描述子生成后,把候选人描述子保存起来。

●然后对测试人脸进行人脸检测、关键点提取、描述子生成。

●最后求测试图像人脸描述子和候选人脸描述子之间的欧氏距离,距离最小者判定为同一个人。

3.代码

代码不做过多解释,因为已经注释的非常完善了。以下是girl-face-rec.py

# -*- coding: UTF-8 -*-import sys,os,dlib,glob,numpyfrom skimage import ioif len(sys.argv) != 5: print "请检查参数是否正确" exit()# 1.人脸关键点检测器predictor_path = sys.argv[1]# 2.人脸识别模型face_rec_model_path = sys.argv[2]# 3.候选人脸文件夹faces_folder_path = sys.argv[3]# 4.需识别的人脸img_path = sys.argv[4]# 1.加载正脸检测器detector = dlib.get_frontal_face_detector()# 2.加载人脸关键点检测器sp = dlib.shape_predictor(predictor_path)# 3. 加载人脸识别模型facerec = dlib.face_recognition_model_v1(face_rec_model_path)# win = dlib.image_window()# 候选人脸描述子listdescriptors = []# 对文件夹下的每一个人脸进行:# 1.人脸检测# 2.关键点检测# 3.描述子提取for f in glob.glob(os.path.join(faces_folder_path, "*.jpg")): print("Processing file: {}".format(f)) img = io.imread(f) #win.clear_overlay() #win.set_image(img) # 1.人脸检测 dets = detector(img, 1) print("Number of faces detected: {}".format(len(dets))) for k, d in enumerate(dets): # 2.关键点检测 shape = sp(img, d) # 画出人脸区域和和关键点 # win.clear_overlay() # win.add_overlay(d) # win.add_overlay(shape) # 3.描述子提取,128D向量 face_descriptor = facerec.compute_face_descriptor(img, shape) # 转换为numpy array v = numpy.array(face_descriptor) descriptors.append(v)# 对需识别人脸进行同样处理# 提取描述子,不再注释img = io.imread(img_path)dets = detector(img, 1)dist = []for k, d in enumerate(dets):shape = sp(img, d)face_descriptor = facerec.compute_face_descriptor(img, shape)d_test = numpy.array(face_descriptor) # 计算欧式距离 for i in descriptors: dist_ = numpy.linalg.norm(i-d_test) dist.append(dist_)# 候选人名单candidate = ['Unknown1','Unknown2','Shishi','Unknown4','Bingbing','Feifei']# 候选人和距离组成一个dictc_d = dict(zip(candidate,dist))cd_sorted = sorted(c_d.iteritems(), key=lambda d:d[1])print " The person is: ",cd_sorted[0][0] dlib.hit_enter_to_continue()

4.运行结果

我们在.py所在的文件夹下打开命令行,运行如下命令

python girl-face-rec.py 1.dat 2.dat ./candidate-faecs test1.jpg

由于shape_predictor_68_face_landmarks.dat和dlib_face_recognition_resnet_model_v1.dat名字实在太长,所以我把它们重命名为1.dat和2.dat。

运行结果如下:

The person is Bingbing。

记忆力不好的同学可以翻上去看看test1.jpg是谁的图片。有兴趣的话可以把四张测试图片都运行下试试。

这里需要说明的是,前三张图输出结果都是非常理想的。但是第四张测试图片的输出结果是候选人4。对比一下两张图片可以很容易发现混淆的原因。

机器毕竟不是人,机器的智能还需要人来提升。

有兴趣的同学可以继续深入研究如何提升识别的准确率。比如每个人的候选图片用多张,然后对比和每个人距离的平均值之类的。全凭自己了。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 人脸识别
    +关注

    关注

    76

    文章

    4012

    浏览量

    81891
  • dlib
    +关注

    关注

    0

    文章

    3

    浏览量

    2597

原文标题:信吗 只用四十行代码就实现了人脸识别

文章出处:【微信号:weixin21ic,微信公众号:21ic电子网】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    如何运用Go语言实现人脸识别

    benchmarks 基准的人脸识别任务上,据说它能实现 99.38% 的准确性,这听起来是很不可思议的。再者,现在一些流行的人脸识别
    的头像 发表于 08-23 09:41 1.3w次阅读

    人脸识别的研究范围和优势

    的主要目的是在输入的整幅图像上寻找人脸区域。2.人脸表征采取某种方式检测人脸和数据库中的人脸。3.人脸
    发表于 06-29 11:52

    人脸识别的三大模式

    机场安检人员通过换班来保证识别的准确率。其次1:N则是在海量的人像数据库中找出当前用户的人脸数据并进行匹配。1:N具有动态比对与非配合的特 点,动态对比是指通过对动态视频流的截取来获得人脸数据并进
    发表于 08-06 14:15

    S32V视觉处理平台怎么实现人脸识别的应用?

    汽车行业ADAS功能需求日益增长,防疲劳驾驶是一个热门方向,对于驾驶员状态的检测,人脸识别是基础,只有快速准确地识别人脸,才能对人脸状态进
    发表于 11-26 06:36

    如何用40行代码实现人脸识别

    Dlib里面有人脸检测器,有训练好的人脸关键点检测器,也有训练好的人脸识别模型。
    的头像 发表于 07-15 09:16 4787次阅读

    人脸识别的好处与坏处

    本视频首先介绍了人脸识别的好处,分别有自然性、非强制性、非接触性、并发性等,其次介绍了人脸识别的坏处。
    的头像 发表于 03-04 14:35 3w次阅读

    人脸识别的原理

    本文主要详细介绍了人脸识别的原理,分别从人脸检测、人脸跟踪、人脸比对等。
    的头像 发表于 03-04 14:55 1.2w次阅读

    什么是人脸识别?如何使用10行代码实现人脸识别

    人脸识别,是基于人的脸部特征信息进行身份识别的一种生物识别技术。摄像机或摄像头采集含有人脸的图
    的头像 发表于 04-06 12:17 5449次阅读

    人脸识别的原理说明

    人脸识别是基于人的脸部信息,进行身份识别的一种生物识别技术,人脸识别时首先判断是否存在
    发表于 06-17 14:36 3610次阅读

    何为人脸识别_人脸识别的应用场景

    人脸识别技术是如今十分热门的一项技术,掌握人脸识别技术的优势不言而喻。下面,我们将首先介绍人脸识别的
    发表于 10-30 16:02 3004次阅读

    人脸识别的优点和识别方法

    人脸识别厂家浅谈人脸识别的智能优点
    发表于 02-06 11:58 708次阅读
    <b class='flag-5'>人脸</b><b class='flag-5'>识别的</b>优点和<b class='flag-5'>识别</b>方法

    人脸识别和指纹识别哪个安全?人脸识别和指纹识别的利弊及风险

      人脸识别是基于人的脸部特征信息进行身份识别的一种生物识别技术。摄像机或摄像头采集含有人脸
    发表于 08-03 16:55 4335次阅读

    生物识别人脸识别的区别

    人脸图片或视频进行分析和识别,以确定个体身份的一种方法。本文将探讨生物识别人脸识别的概念、应用领域和区别。
    发表于 08-28 17:29 1592次阅读

    人脸检测与识别的方法有哪些

    人脸检测与识别是计算机视觉领域中的一个重要研究方向,具有广泛的应用前景,如安全监控、身份认证、智能视频分析等。本文将详细介绍人脸检测与识别的方法。 引言
    的头像 发表于 07-03 14:45 717次阅读

    如何设计人脸识别的神经网络

    人脸识别技术是一种基于人脸特征信息进行身份识别的技术,广泛应用于安全监控、身份认证、智能门禁等领域。神经网络是实现
    的头像 发表于 07-04 09:20 658次阅读