从单片机转到ARM,主要需要学习ARM的架构,ARM相比单片机多了一些外设和总线。在仅仅是裸奔的情况下,如果熟悉了ARM架构,那么我认为使用任何ARM架构的芯片和用单片机将没有区别。ARM架构之所以更复杂,当然是为了跑更快以及更好地支持片上系统,所以在某种程度上来说对片上系统不是很了解的话那对于ARM架构的理解也不会那么深。
本文首先介绍了ARM的架构图及各个模式,其次介绍了通用寄存器、MMU相关地址基本概念、ARM920T中有三种类型的地址等,最后阐述了ARM处理器的架构及命名规则。
一、ARM架构图
下图所示的是ARM构架图。它由32位ALU、若干个32位通用寄存器以及状态寄存器、32&TImes;8位乘法器、32&TImes;32位桶形移位寄存器、指令译码以及控制逻辑、指令流水线和数据/地址寄存器组成。
1.ALU:它有两个操作数锁存器、加法器、逻辑功能、结果以及零检测逻辑构成。
2.桶形移位寄存器:ARM采用了32&TImes;32位的桶形移位寄存器,这样可以使在左移/右移n位、环移n位和算术右移n位等都可以一次完成。
3.高速乘法器:乘法器一般采用“加一移位”的方法来实现乘法。ARM为了提高运算速度,则采用两位乘法的方法,根据乘数的2位来实现“加一移位”运算;ARM高速乘法器采用32&TImes;8位的结构,这样,可以降低集成度(其相应芯片面积不到并行乘法器的1/3)。
4.浮点部件:浮点部件是作为选件供ARM构架使用。FPA10浮点加速器是作为协处理方式与ARM相连,并通过协处理指令的解释来执行。
5.控制器:ARM的控制器采用的是硬接线的可编程逻辑阵列PLA。
6.寄存器
二、ARM的各个模式
ARM有以下7种模式:
用户模式(User,usr) 正常程序执行的模式
快速中断模式(FIQ,fiq) 用于高速数据传输和通道处理
外部中断模式(IRQ,irq) 用于通常的中断处理
特权模式(Supervisor,svc) 供操作系统使用的一种保护模式
数据访问中止模式(Abort,abt) 用于虚拟存储及存储保护
未定义指令中止模式(Undefined,und) 用于支持通过软件方针硬件的协处理器
系统模式(System,sys) 用于运行特权级的操作系统任务
其中除了用户模式之外都称之为特权模式(privileged modes),而在privileged modes中除了系统模式其它都称为异常模式,即exception mode。起初关于异常这个词我的理解有些偏差,我认为异常模式就是这个系统出错了,而实际上不是。exception mode的意思是例外,意思是“这模式什么时候会发生不好说……”,比如说来了个外部中断也会进入异常模式,但是此时系统是运行完好的。
其中SVC用于在系统刚启动的启动文件BOOT程序中,跳转到kernel之前必须为SVC,SVC具有最高权限,可以对任何寄存器进行操作。在裸机程序中我们有时候会一直处于SVC模式下。
关于什么时候会进入用户模式或者系统模式,以下是我的猜测,比如进入linux kernel之后会设置成sys模式,比如任务调度等等都会在sys模式中,而执行用户编写的应用程序时,系统是处于usr模式中。以上猜测需要在linux中找出证据验证。
其中FIQ,IRQ为中断模式,有中断发生时会进入FIQ模式或者IRQ模式,至于到底是进入哪个模式是由开发者设定的。理论上FIQ模式的响应速度比IRQ模式要快。
其中abt模式通常发生于在访问地址没有对齐时的情况,此时会跳转到abt所属的中断向量地址中去。und模式应该是取到指令之后发现指令不能用,,此时会跳转到abt所属的中断向量地址中去。以上两种模式应该是开发过程中出现BUG才会进入的,也是一种调试手段,在版本发行之前应该消除这些错误。
三、通用寄存器
R13通常被用作栈指针,进入异常模式时,可以将需要使用的寄存器保存在R13所指的栈中;当退出异常吹程序时,将保存在R13所指的栈中的寄存器值弹出。
R14又被称为连接寄存器(LinkRegister,LR),即PC的返回值。
R15又被记作PC。ARM指令是字对齐的,PC的值的第0位和第1位总为0。也就是说是32位对齐。
就Cortex-M3来说,拥有R0-R15的寄存器组。其中R13作为堆栈指针SP。SP有两个,分别为R13(MSP)和R13(PSP)即主堆栈指针(MSP)和进程堆栈指针(PSP),但在同一时刻只能有一个可以看到,这也就是所谓的“banked”寄存器。这些寄存器都是32位的。
四、MMU相关地址基本概念
关于MMU,因为多种存储设备的物理地址不同以及不连贯性,将其地址安放在合理的连续虚拟地址上是很必要的,所以MMU出现了。MMU即将不同的地址放在合适的虚拟地址中,以便调度。比如要跑LINUX必须要有MMU的支持才行。
五、ARM920T中有三种类型的地址
虚拟地址(VA),变换后的虚拟地址(MVA),物理地址(PA)。
以下是一个当一个指令被请求时地址所做操作的例子:
1、 指令VA(IVA)被ARM920T发出
2、 它被ProcID(当前进程所在的进程空间块的编号)转换成指令MVA(IMVA),指令CACHE(ICACHE)和MMU看到的就是IMVA。
3、 如果在IMMU上的保护模块确认IMVA不会被中断,并且IMVA标签也在ICACHE中,指令数据会读出并返回到ARM920T内核中。
4、 如果IMVA tag并不在ICACHE中,那么IMMU会产生出一个指令PA(IPA)。地址会给AMBA总线接口以获取外部数据。
那么VA是如何被PID转换为MVA的呢?
这有关于CP15中的13,FCSE PID register
R13是fast context switch extension(FCSE 快速上下文切换扩展)processidentifier(PID 进程标识符)寄存器,此寄存器复位时为0。
读R13会得到FCSE PID的值,写R13会更新FCSE PID的值到[31:25]中,位[24:0]应该是零。
如何使用FCSE PID:
920T内核发出的地址都是0-32MB的范围,4GB的逆序空间被分成了1238个进程空间块,每个进程空间块大小为32MB。每个进程空间块中可以包含一个进程。系统128个进程空间块的编号0-127,编号为I的进程空间块中的进程实际使用的虚拟地址空间为(I*0x02000000)到(I*0x02000000+0x01FFFFFF)。
所以VA通常高7位都为0时 MVA = VA | (PID 《《 25)
当VA高7位不为0时 MVA = VA,这种VA是本进程用于访问别的进程中的数据和指令的虚拟地址,注意这时被访问的进程标识符不能为0。
注意:当FCSE_PID为0时,即当前复位,则当前920T和CACHES及MMU之间是平面映射的关系(很巧妙:))。
六、TLB是什么
TLB即translate look-aside buffer,快表就是存储几个常用的页表,以提高系统运行的速度。在更新页表之前要使其无效,其操作的寄存器为R8,R8为只写寄存器,如果读它则会造成不可估计的后果。
七、AP赋值表
而DOMAIN的赋值则是在C3中的,32bit共有16个域,每个域分两个bit,这两个bit控制当前域的权限。而以上四个bit是为了选择0-15个域的其中一个。
八、关于C、B赋值
以上有关于两种写缓存,写通以及写回。写回法是指CPU在执行写操作时,被写的数据只写入cache,不写入主存,仅当需要替换时,才把已经修改的cache块写回到主存中。写通法是指CPU在执行写操作时,必须把数据同时写入cache和主存。
九、时钟以及总线概念
FCLK, HCLK, andPCLK
FCLK is used byARM920T.
HCLK is used forAHB bus, which is used by the ARM920T, the memory controller, the interruptcontroller, the LCD controller, the DMA and USB host block.
PCLK is used forAPB bus, which is used by the peripherals such as WDT, IIS, I2C, PWM timer, MMCinterface,ADC, UART, GPIO, RTC and SPI.
What is AHB/APB?
InternalAdvanced Microcontroller Bus Architecture(AMBA)是一种总线标准,以下两项都符合此标准。
AHB(AdvancedHigh performance Bus),主要用于系统高性能、高时速速率模块间通信。
APB(AdvancedPeripheral Bus),主要用于慢速片上外设与ARM核的通讯。
AHB私有外设总线,只用于CM3内部的AHB外设,它们是:NVIC,FPB, DWT和ITM。
APB私有外设总线,既用于CM3内部的APB设备,也用于外部设备(这里的“外部”是对内核而言)。CM3允许器件制造商再添加一些片上APB外设到APB私有总线上,它们通过APB接口来访问。
十、四种耗电模式
NORMAL,SLOW,IDLE,SLEEP
先配置主PLL MPLL给CPU用。在上电复位的时候PLL是不稳定的,所以在PLLCON在被软件配置之前Fin直接是跳过MPll给FCLK,所以不配置PLLCON也是可以正常工作。即使工作在正常状态下,也可以对MPLLCON进行配置,配置之后等待PLL Lock-time过后内部各模块的CLK才可以被正常供应。
十一、arm处理器架构详解
那架构呢?再来看一张图。
其中左侧的就是架构,右侧的是处理器,也可以叫核。arm首个最成功的cpu是ARM7TDMI,是基于ARMv4的。ARM架构包含了下述RISC特性:
读取/储存 架构
不支援地址不对齐内存存取(ARMv6内核现已支援)
正交指令集(任意存取指令可以任意的寻址方式存取数据Orthogonal instrucTIon set)
大量的16 &TImes; 32-bit 寄存器阵列(register file)
固定的32 bits 操作码(opcode)长度,降低编码数量所产生的耗费,减轻解码和流水线化的负担。
大多均为一个CPU周期执行。
不同版本的架构会有所调整。
和三星相同的其他和arm合作的各大厂商通常会把它的CPU和各类外围IP都放到一起,然后自己拿着图纸去流片,生产出来的也是一个正方形,下面有很多引脚,这个东西不仅包含了CPU,还包含了其他的控制器,这个东西就叫做SOC(system on chip)。从英文来看,所谓的四核SOC什么的,本意就不是单指CPU,而是四核系统。
所以目前各大厂商所做的事情,就是买来ARM的授权,得到ARM处理器的源代码,而后自己搞一些外围IP(或者买或者自己设计),组成一个SOC后,去流片。不同的SOC,架构不同(就是CPU如何和IP联系起来,有的以总线为核心,有的以DDR为核心),所以,海思是拥有自主产权的SOC架构。可是,无论任何厂商,再怎么折腾,都没有怎么动过CPU,ARM核心就好好的呆在那里,那就是中央处理器。
目前ARM的产品天梯:
ARM命名规则:
第一个数字:系列名称:eg.ARM7、ARM9
第二个数字:Memory system
2:带有MMU
4:带有MPU
6:无MMU与MPU
第三个数字:Memory size
0:标准Cache(4-128k)
2:减小的Cache
6:可变的Cache
第四个字符:T:表示支持Thumb指令集
D:表示支持片上调试(Debug)
M:表示内嵌硬件乘法器(MulTIplier)
I :支持片上断点和调试点
E:表示支持增强型DSP功能
J :表示支持Jazelle技术,即Java加速器
S:表示全合成式
-
ARM处理器
+关注
关注
6文章
360浏览量
41737 -
ARM架构
+关注
关注
14文章
177浏览量
36308
发布评论请先 登录
相关推荐
评论